quaexp {lmomco} | R Documentation |
Quantile Function of the Exponential Distribution
Description
This function computes the quantiles of the Exponential distribution given parameters (\xi
and \alpha
) computed by parexp
. The quantile function is
x(F) = \xi - \alpha \log(1-F) \mbox{,}
where x(F)
is the quantile for nonexceedance probability F
, \xi
is a location parameter, and \alpha
is a scale parameter.
Usage
quaexp(f, para, paracheck=TRUE)
Arguments
f |
Nonexceedance probability ( |
para |
|
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
Value
Quantile value for nonexceedance probability F
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfexp
, pdfexp
, lmomexp
, parexp
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
quaexp(0.5,parexp(lmr))