quaemu {lmomco} | R Documentation |
Quantile Function of the Eta-Mu Distribution
Description
This function computes the quantiles of the Eta-Mu (\eta:\mu
) distribution given \eta
and \mu
) computed by paremu
. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfemu
) is used.
Usage
quaemu(f, para, paracheck=TRUE, yacoubsintegral=TRUE, eps=1e-7)
Arguments
f |
Nonexceedance probability ( |
para |
|
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
yacoubsintegral |
A logical controlling whether the integral by Yacoub (2007) is used for the cumulative distribution function instead of numerical integration of |
eps |
A close-enough error term for the recursion process. |
Value
Quantile value for nonexceedance probability F
.
Author(s)
W.H. Asquith
References
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68–81
See Also
cdfemu
, pdfemu
, lmomemu
, paremu
Examples
## Not run:
quaemu(0.75,vec2par(c(0.9, 1.5), type="emu")) #
## End(Not run)