| quaemu {lmomco} | R Documentation | 
Quantile Function of the Eta-Mu Distribution
Description
This function computes the quantiles of the Eta-Mu (\eta:\mu) distribution given \eta and \mu) computed by paremu. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfemu) is used.
Usage
quaemu(f, para, paracheck=TRUE, yacoubsintegral=TRUE, eps=1e-7)
Arguments
| f | Nonexceedance probability ( | 
| para | |
| paracheck | A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. | 
| yacoubsintegral | A logical controlling whether the integral by Yacoub (2007) is used for the cumulative distribution function instead of numerical integration of  | 
| eps | A close-enough error term for the recursion process. | 
Value
Quantile value for nonexceedance probability F.
Author(s)
W.H. Asquith
References
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68–81
See Also
cdfemu, pdfemu, lmomemu,  paremu
Examples
## Not run: 
quaemu(0.75,vec2par(c(0.9, 1.5), type="emu")) #
## End(Not run)