| quaaep4 {lmomco} | R Documentation |
Quantile Function of the 4-Parameter Asymmetric Exponential Power Distribution
Description
This function computes the quantiles of the 4-parameter Asymmetric Exponential Power distribution given parameters (\xi, \alpha, \kappa, and h) of the distribution computed by paraep4. The quantile function of the distribution given the cumulative distribution function F(x) for F < F(\xi) is
x(F) = \xi - \alpha\kappa\biggl[\gamma^{(-1)}\bigl((1+\kappa^2)F/\kappa^2,\; 1/h\bigr)\biggr]^{1/h}\mbox{,}
and for F \ge F(\xi) is
x(F) = \xi + \frac{\alpha}{\kappa}\biggl[\gamma^{(-1)}\bigl((1+\kappa^2)(1-F),\; 1/h\bigr)\biggr]^{1/h} \mbox{,}
where x(F) is the quantile x for nonexceedance probability F,
\xi is a location parameter, \alpha is a scale parameter,
\kappa is a shape parameter, h is another shape parameter, \gamma^{(-1)}(Z, shape) is the inverse of the upper tail of the incomplete gamma function. The range of the distribution is -\infty < x < \infty. The inverse upper tail of the incomplete gamma function is qgamma(Z, shape, lower.tail=FALSE) in R. The mathematical definition of the upper tail of the incomplete gamma function shown in documentation for cdfaep4. If the \tau_3 of the distribution is zero (symmetrical), then the distribution is known as the Exponential Power (see lmrdia46).
Usage
quaaep4(f, para, paracheck=TRUE)
Arguments
f |
Nonexceedance probability ( |
para |
The parameters from |
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
Value
Quantile value for nonexceedance probability F.
Author(s)
W.H. Asquith
References
Asquith, W.H., 2014, Parameter estimation for the 4-parameter asymmetric exponential power distribution by the method of L-moments using R: Computational Statistics and Data Analysis, v. 71, pp. 955–970.
Delicado, P., and Goria, M.N., 2008, A small sample comparison of maximum likelihood, moments and L-moments methods for the asymmetric exponential power distribution: Computational Statistics and Data Analysis, v. 52, no. 3, pp. 1661–1673.
See Also
cdfaep4, pdfaep4, lmomaep4, paraep4
Examples
para <- vec2par(c(0,1, 0.5, 2), type="aep4");
IQR <- quaaep4(0.75,para) - quaaep4(0.25,para);
cat("Interquartile Range=",IQR,"\n")
## Not run:
F <- c(0.00001, 0.0001, 0.001, seq(0.01, 0.99, by=0.01),
0.999, 0.9999, 0.99999);
delx <- 0.1;
x <- seq(-10,10, by=delx);
K <- .67
PAR <- list(para=c(0,1, K, 0.5), type="aep4");
plot(x,cdfaep4(x, PAR), type="n",
ylab="NONEXCEEDANCE PROBABILITY",
ylim=c(0,1), xlim=c(-20,20));
lines(x,cdfaep4(x,PAR), lwd=3);
lines(quaaep4(F, PAR), F, col=4);
PAR <- list(para=c(0,1, K, 1), type="aep4");
lines(x,cdfaep4(x, PAR), lty=2, lwd=3);
lines(quaaep4(F, PAR), F, col=4, lty=2);
PAR <- list(para=c(0,1, K, 2), type="aep4");
lines(x,cdfaep4(x, PAR), lty=3, lwd=3);
lines(quaaep4(F, PAR), F, col=4, lty=3);
PAR <- list(para=c(0,1, K, 4), type="aep4");
lines(x,cdfaep4(x, PAR), lty=4, lwd=3);
lines(quaaep4(F, PAR), F, col=4, lty=4);
## End(Not run)