qua.ostat {lmomco} | R Documentation |
Compute the Quantiles of the Distribution of an Order Statistic
Description
This function computes a specified quantile by nonexceedance probability F
for the j
th-order statistic of a sample of size n
for a given distribution. Let the quantile function (inverse distribution) of the Beta distribution be
\mathrm{B}^{(-1)}(F,j,n-j+1) \mbox{,}
and let x(F,\Theta)
represent the quantile function of the given distribution and \Theta
represents a vector of distribution parameters. The quantile function of the distribution of the j
th-order statistic is
x\bigl(\mathrm{B}^{(-1)}(F,j,n-j+1),\Theta\bigr) \mbox{.}
Usage
qua.ostat(f, j, n, para=NULL)
Arguments
f |
The nonexceedance probability |
j |
The |
n |
The sample size. |
para |
A distribution parameter list from a function such as |
Value
The quantile of the distribution of the j
th-order statistic is returned.
Author(s)
W.H. Asquith
References
Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton, Fla.
See Also
Examples
gpa <- vec2par(c(100, 500, 0.5), type="gpa")
n <- 20 # the sample size
j <- 15 # the 15th order statistic
F <- 0.99 # the 99th percentile
theoOstat <- qua.ostat(F, j, n, gpa)
## Not run:
# Let us test this value against a brute force estimate.
Jth <- vector(mode="numeric")
for(i in seq_len(50000)) {
Q <- sort( rlmomco(n, gpa) )
Jth[i] <- Q[j]
}
bruteOstat <- quantile(Jth, F) # estimate by built-in function
theoOstat <- signif( theoOstat, digits=5)
bruteOstat <- signif(bruteOstat, digits=5)
cat(c("Theoretical=", theoOstat, " Simulated=", bruteOstat, "\n")) #
## End(Not run)