| pdfwei {lmomco} | R Documentation |
Probability Density Function of the Weibull Distribution
Description
This function computes the probability density of the Weibull distribution given parameters (\zeta, \beta, and \delta) computed by parwei. The probability density function is
f(x) = \delta Y^{\delta-1} \exp(-Y^\delta)/\beta
where f(x) is the probability density, Y = (x-\zeta)/\beta, quantile x,
\zeta is a location parameter, \beta is a scale parameter, and
\delta is a shape parameter.
The Weibull distribution is a reverse Generalized Extreme Value distribution. As result, the Generalized Extreme Value algorithms are used for implementation of the Weibull in lmomco. The relations between the Generalized Extreme Value parameters (\xi, \alpha, and \kappa) are \kappa = 1/\delta, \alpha = \beta/\delta, and \xi = \zeta - \beta. These relations are available in Hosking and Wallis (1997).
In R, the probability distribution function of the Weibull distribution is pweibull. Given a Weibull parameter object para, the R syntax is pweibull(x+para$para[1], para$para[3],
scale=para$para[2]). For the lmomco implmentation, the reversed Generalized Extreme Value distribution pdfgev is used and again in R syntax is pdfgev(-x,para).
Usage
pdfwei(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfwei, quawei, lmomwei, parwei
Examples
# Evaluate Weibull deployed here and built-in function (pweibull)
lmr <- lmoms(c(123,34,4,654,37,78))
WEI <- parwei(lmr)
F1 <- cdfwei(50,WEI)
F2 <- pweibull(50+WEI$para[1],shape=WEI$para[3],scale=WEI$para[2])
if(F1 == F2) EQUAL <- TRUE
## Not run:
# The Weibull is a reversed generalized extreme value
Q <- sort(rlmomco(34,WEI)) # generate Weibull sample
lm1 <- lmoms( Q) # regular L-moments
lm2 <- lmoms(-Q) # L-moment of negated (reversed) data
WEI <- parwei(lm1) # parameters of Weibull
GEV <- pargev(lm2) # parameters of GEV
F <- nonexceeds() # Get a vector of nonexceedance probabilities
plot(pp(Q),Q)
lines(cdfwei(Q,WEI),Q,lwd=5,col=8)
lines(1-cdfgev(-Q,GEV),Q,col=2) # line overlaps previous distribution
## End(Not run)