| pdfwak {lmomco} | R Documentation |
Probability Density Function of the Wakeby Distribution
Description
This function computes the probability density
of the Wakeby distribution given parameters (\xi, \alpha, \beta, \gamma, and \delta) computed by parwak. The probability density function is
f(x) = (\alpha[1-F(x)]^{\beta - 1} + \gamma[1-F(x)]^{-\delta - 1})^{-1}\mbox{,}
where f(x) is the probability density for quantile x, F(x) is the cumulative distribution function or nonexceedance probability at x, \xi is a location parameter, \alpha and \beta are scale parameters, and \gamma, and \delta are shape parameters. The five returned parameters from parwak in order are \xi, \alpha, \beta, \gamma, and \delta.
Usage
pdfwak(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
Sourced from written communication with Dr. Hosking in October 2007.
See Also
cdfwak, quawak, lmomwak, parwak
Examples
## Not run:
lmr <- vec2lmom(c(1,0.5,.4,.3,.15))
wak <- parwak(lmr)
F <- nonexceeds()
x <- quawak(F,wak)
check.pdf(pdfwak,wak,plot=TRUE)
## End(Not run)