pdfwak {lmomco} | R Documentation |
Probability Density Function of the Wakeby Distribution
Description
This function computes the probability density
of the Wakeby distribution given parameters (\xi
, \alpha
, \beta
, \gamma
, and \delta
) computed by parwak
. The probability density function is
f(x) = (\alpha[1-F(x)]^{\beta - 1} + \gamma[1-F(x)]^{-\delta - 1})^{-1}\mbox{,}
where f(x)
is the probability density for quantile x
, F(x)
is the cumulative distribution function or nonexceedance probability at x
, \xi
is a location parameter, \alpha
and \beta
are scale parameters, and \gamma
, and \delta
are shape parameters. The five returned parameters from parwak
in order are \xi
, \alpha
, \beta
, \gamma
, and \delta
.
Usage
pdfwak(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
Sourced from written communication with Dr. Hosking in October 2007.
See Also
cdfwak
, quawak
, lmomwak
, parwak
Examples
## Not run:
lmr <- vec2lmom(c(1,0.5,.4,.3,.15))
wak <- parwak(lmr)
F <- nonexceeds()
x <- quawak(F,wak)
check.pdf(pdfwak,wak,plot=TRUE)
## End(Not run)