| pdftri {lmomco} | R Documentation |
Probability Density Function of the Asymmetric Triangular Distribution
Description
This function computes the probability density of the Asymmetric Triangular distribution given parameters (\nu, \omega, and \psi) computed by partri. The probability density function is
f(x) = \frac{2(x-\nu)}{(\omega - \nu)(\psi - \nu)}\mbox{,}
for x < \omega,
f(x) = \frac{2(\psi-x)}{(\psi - \omega)(\psi - \nu)}\mbox{,}
for x > \omega, and
f(x) = \frac{2}{(\psi - \nu)}\mbox{,}
for x = \omega
where x(F) is the quantile for nonexceedance probability F, \nu is the minimum, \psi is the maximum, and \omega is the mode of the distribution.
Usage
pdftri(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
See Also
pdftri, quatri, lmomtri, partri
Examples
tri <- vec2par(c(-120, 102, 320), type="tri")
x <- quatri(nonexceeds(),tri)
pdftri(x,tri)
[Package lmomco version 2.5.1 Index]