pdftri {lmomco} | R Documentation |
Probability Density Function of the Asymmetric Triangular Distribution
Description
This function computes the probability density of the Asymmetric Triangular distribution given parameters (\nu
, \omega
, and \psi
) computed by partri
. The probability density function is
f(x) = \frac{2(x-\nu)}{(\omega - \nu)(\psi - \nu)}\mbox{,}
for x < \omega
,
f(x) = \frac{2(\psi-x)}{(\psi - \omega)(\psi - \nu)}\mbox{,}
for x > \omega
, and
f(x) = \frac{2}{(\psi - \nu)}\mbox{,}
for x = \omega
where x(F)
is the quantile for nonexceedance probability F
, \nu
is the minimum, \psi
is the maximum, and \omega
is the mode of the distribution.
Usage
pdftri(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
See Also
pdftri
, quatri
, lmomtri
, partri
Examples
tri <- vec2par(c(-120, 102, 320), type="tri")
x <- quatri(nonexceeds(),tri)
pdftri(x,tri)
[Package lmomco version 2.5.1 Index]