pdfst3 {lmomco}R Documentation

Probability Density Function of the 3-Parameter Student t Distribution

Description

This function computes the probability density of the 3-parameter Student t distribution given parameters (ξ\xi, α\alpha, ν\nu) computed by parst3. The probability density function is

f(x)=Γ(12+12ν)αν1/2Γ(12)Γ(12ν)(1+t2/ν)(ν+1)/2\mbox, f(x) = \frac{\Gamma(\frac{1}{2} + \frac{1}{2}\nu)}{\alpha\nu^{1/2}\,\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}\nu)}(1+t^2/\nu)^{-(\nu+1)/2}\mbox{,}

where f(x)f(x) is the probability density for quantile xx, tt is defined as t=(xξ)/αt = (x - \xi)/\alpha, ξ\xi is a location parameter, α\alpha is a scale parameter, and ν\nu is a shape parameter in terms of the degrees of freedom as for the more familiar Student t distribution in R.

For value X, the built-in R functions can be used. For U = ξ\xi and A=α\alpha for 1.001ν105.51.001 \le \nu \le 10^5.5, one can use dt((X-U)/A, N)/A for N=ν\nu. The R function dt is used for the 1-parameter Student t density. The limits for ν\nu stem from study of ability for theoretical integration of the quantile function to produce viable τ4\tau_4 and τ6\tau_6 (see inst/doc/t4t6/studyST3.R).

Usage

pdfst3(x, para, paracheck=TRUE)

Arguments

x

A real value vector.

para

The parameters from parst3 or vec2par.

paracheck

A logical on whether the parameter should be check for validity.

Value

Probability density (ff) for xx.

Author(s)

W.H. Asquith

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.

See Also

cdfst3, quast3, lmomst3, parst3

Examples

## Not run: 
xs <- -200:200
  para <- vec2par(c(37, 25,  114), type="st3")
plot(xs, pdfst3(xs, para), type="l")
  para <- vec2par(c(11, 36, 1000), type="st3")
lines(xs, pdfst3(xs, para), lty=2)
  para <- vec2par(c(-7, 60,   40), type="st3")
lines(xs, pdfst3(xs, para), lty=3)

## End(Not run)

[Package lmomco version 2.5.1 Index]