| pdfst3 {lmomco} | R Documentation |
Probability Density Function of the 3-Parameter Student t Distribution
Description
This function computes the probability density of the 3-parameter Student t distribution given parameters (\xi, \alpha, \nu) computed by parst3. The probability density function is
f(x) = \frac{\Gamma(\frac{1}{2} + \frac{1}{2}\nu)}{\alpha\nu^{1/2}\,\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}\nu)}(1+t^2/\nu)^{-(\nu+1)/2}\mbox{,}
where f(x) is the probability density for quantile x, t is defined as t = (x - \xi)/\alpha, \xi is a location parameter, \alpha is a scale parameter, and \nu is a shape parameter in terms of the degrees of freedom as for the more familiar Student t distribution in R.
For value X, the built-in R functions can be used. For U = \xi and A=\alpha for 1.001 \le \nu \le 10^5.5, one can use dt((X-U)/A, N)/A for N=\nu. The R function dt is used for the 1-parameter Student t density. The limits for \nu stem from study of ability for theoretical integration of the quantile function to produce viable \tau_4 and \tau_6 (see inst/doc/t4t6/studyST3.R).
Usage
pdfst3(x, para, paracheck=TRUE)
Arguments
x |
A real value vector. |
para |
|
paracheck |
A logical on whether the parameter should be check for validity. |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
See Also
cdfst3, quast3, lmomst3, parst3
Examples
## Not run:
xs <- -200:200
para <- vec2par(c(37, 25, 114), type="st3")
plot(xs, pdfst3(xs, para), type="l")
para <- vec2par(c(11, 36, 1000), type="st3")
lines(xs, pdfst3(xs, para), lty=2)
para <- vec2par(c(-7, 60, 40), type="st3")
lines(xs, pdfst3(xs, para), lty=3)
## End(Not run)