pdfsla {lmomco} | R Documentation |
Probability Density Function of the Slash Distribution
Description
This function computes the probability density of the Slash distribution given parameters (\xi
and \alpha
) provided by parsla
. The probability density function is
f(x) = \frac{\phi(0) - \phi(y)}{y^2} \mbox{,}
where f(x)
is the probability density for quantile x
, y = (x - \xi)/\alpha
, \xi
is a location parameter, and \alpha
is a scale parameter. The function \phi(y)
is the probability density function of the Standard Normal distribution.
Usage
pdfsla(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Rogers, W.H., and Tukey, J.W., 1972, Understanding some long-tailed symmetrical distributions: Statistica Neerlandica, v. 26, no. 3, pp. 211–226.
See Also
cdfsla
, quasla
, lmomsla
, parsla
Examples
sla <- vec2par(c(12, 1.2), type="sla")
x <- quasla(0.5, sla)
pdfsla(x, sla)
[Package lmomco version 2.5.1 Index]