| pdfrevgum {lmomco} | R Documentation |
Probability Density Function of the Reverse Gumbel Distribution
Description
This function computes the probability density
of the Reverse Gumbel distribution given parameters (\xi and \alpha) computed by parrevgum. The probability density function is
f(x) = \alpha^{-1} \exp(Y) [\exp(\exp[-\exp(Y)])] \mbox{,}
where
Y = \frac{x - \xi}{\alpha} \mbox{,}
where f(x) is the probability density for quantile x,
\xi is a location parameter, and \alpha is a scale parameter.
Usage
pdfrevgum(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1995, The use of L-moments in the analysis of censored data, in Recent Advances in Life-Testing and Reliability, edited by N. Balakrishnan, chapter 29, CRC Press, Boca Raton, Fla., pp. 546–560.
See Also
cdfrevgum, quarevgum, lmomrevgum, parrevgum
Examples
# See p. 553 of Hosking (1995)
# Data listed in Hosking (1995, table 29.3, p. 553)
D <- c(-2.982, -2.849, -2.546, -2.350, -1.983, -1.492, -1.443,
-1.394, -1.386, -1.269, -1.195, -1.174, -0.854, -0.620,
-0.576, -0.548, -0.247, -0.195, -0.056, -0.013, 0.006,
0.033, 0.037, 0.046, 0.084, 0.221, 0.245, 0.296)
D <- c(D,rep(.2960001,40-28)) # 28 values, but Hosking mentions
# 40 values in total
z <- pwmRC(D,threshold=.2960001)
str(z)
# Hosking reports B-type L-moments for this sample are
# lamB1 = -0.516 and lamB2 = 0.523
btypelmoms <- pwm2lmom(z$Bbetas)
# My version of R reports lamB1 = -0.5162 and lamB2 = 0.5218
str(btypelmoms)
rg.pars <- parrevgum(btypelmoms,z$zeta)
str(rg.pars)
# Hosking reports xi=0.1636 and alpha=0.9252 for the sample
# My version of R reports xi = 0.1635 and alpha = 0.9254
# Now one can continue one with a plotting example.
## Not run:
F <- nonexceeds()
PP <- pp(D) # plotting positions of the data
D <- sort(D)
plot(D,PP)
lines(D,cdfrevgum(D,rg.pars))
# Now finally do the PDF
F <- seq(0.01,0.99,by=.01)
x <- quarevgum(F,rg.pars)
plot(x,pdfrevgum(x,rg.pars),type='l')
## End(Not run)