pdfray {lmomco}R Documentation

Probability Density Function of the Rayleigh Distribution

Description

This function computes the probability density of the Rayleigh distribution given parameters (ξ\xi and α\alpha) computed by parray. The probability density function is

f(x)=xξα2exp ⁣((xξ)22α2)\mbox,f(x) = \frac{x - \xi}{\alpha^2}\,\exp\!\left(\frac{-(x - \xi)^2}{2\alpha^2}\right)\mbox{,}

where f(x)f(x) is the nonexceedance probability for quantile xx, ξ\xi is a location parameter, and α\alpha is a scale parameter.

Usage

pdfray(x, para)

Arguments

x

A real value vector.

para

The parameters from parray or similar.

Value

Probability density (ff) for xx.

Author(s)

W.H. Asquith

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, quaray, lmomray, parray

Examples

  lmr <- lmoms(c(123,34,4,654,37,78))
  ray <- parray(lmr)
  x <- quaray(0.5,ray)
  pdfray(x,ray)

[Package lmomco version 2.5.1 Index]