pdfpe3 {lmomco} | R Documentation |
Probability Density Function of the Pearson Type III Distribution
Description
This function computes the probability density of the Pearson Type III distribution given parameters (\mu
, \sigma
, and \gamma
) computed by parpe3
. These parameters are equal to the product moments (pmoms
): mean, standard deviation, and skew. The probability density function for \gamma \ne 0
is
f(x) = \frac{Y^{\alpha -1} \exp({-Y/\beta})}
{\beta^\alpha\, \Gamma(\alpha)} \mbox{,}
where f(x)
is the probability density for quantile x
, \Gamma
is the complete gamma function in R as gamma
,
\xi
is a location parameter, \beta
is a scale parameter,
\alpha
is a shape parameter, and Y = x - \xi
for \gamma > 0
and Y = \xi - x
for \gamma < 0
. These three “new” parameters are related to the product moments (\mu
, mean; \sigma
, standard deviation; \gamma
, skew) by
\alpha = 4/\gamma^2 \mbox{,}
\beta = \frac{1}{2}\sigma |\gamma| \mbox{,\ and}
\xi = \mu - 2\sigma/\gamma \mbox{.}
If \gamma = 0
, the distribution is symmetrical and simply is the probability density Normal distribution with mean and standard deviation of \mu
and \sigma
, respectively. Internally, the \gamma = 0
condition is implemented by R function dnorm
. The PearsonDS package supports the Pearson distribution system including the Type III (see Examples).
Usage
pdfpe3(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfpe3
, quape3
, lmompe3
, parpe3
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
pe3 <- parpe3(lmr)
x <- quape3(0.5,pe3)
pdfpe3(x,pe3)
## Not run:
# Demonstrate Pearson Type III between lmomco and PearsonDS
qlmomco.pearsonIII <- function(f, para) {
MU <- para$para[1] # product moment mean
SIGMA <- para$para[2] # product moment standard deviation
GAMMA <- para$para[3] # product moment skew
L <- para$para[1] - 2*SIGMA/GAMMA # location
S <- (1/2)*SIGMA*abs(GAMMA) # scale
A <- 4/GAMMA^2 # shape
return(PearsonDS::qpearsonIII(f, A, L, S)) # shape comes first!
}
FF <- nonexceeds(); para <- vec2par(c(6,.4,.7), type="pe3")
plot( FF, qlmomco(FF, para), xlab="Probability", ylab="Quantile", cex=3)
lines(FF, qlmomco.pearsonIII(FF, para), col=2, lwd=3) #
## End(Not run)
## Not run:
# Demonstrate forced Pearson Type III parameter estimation via PearsonDS package
para <- vec2par(c(3, 0.4, 0.6), type="pe3"); X <- rlmomco(105, para)
lmrpar <- lmom2par(lmoms(X), type="pe3")
mpspar <- mps2par(X, type="pe3"); mlepar <- mle2par(X, type="pe3")
PDS <- PearsonDS:::pearsonIIIfitML(X) # force function exporting
if(PDS$convergence != 0) {
warning("convergence failed"); PDS <- NULL # if null, rerun simulation [new data]
} else {
# This is a list() mimic of PearsonDS::pearsonFitML()
PDS <- list(type=3, shape=PDS$par[1], location=PDS$par[2], scale=PDS$par[3])
skew <- sign(PDS$shape) * sqrt(4/PDS$shape)
stdev <- 2*PDS$scale / abs(skew); mu <- PDS$location + 2*stdev/skew
PDS <- vec2par(c(mu,stdev,skew), type="pe3") # lmomco form of parameters
}
print(lmrpar$para); print(mpspar$para); print(mlepar$para); print(PDS$para)
# mu sigma gamma
# 2.9653380 0.3667651 0.5178592 # L-moments (by lmomco, of course)
# 2.9678021 0.3858198 0.4238529 # MPS by lmomco
# 2.9653357 0.3698575 0.4403525 # MLE by lmomco
# 2.9653379 0.3698609 0.4405195 # MLE by PearsonDS
# So we can see for this simulation that the two MLE approaches are similar.
## End(Not run)