pdfln3 {lmomco} | R Documentation |
Probability Density Function of the 3-Parameter Log-Normal Distribution
Description
This function computes the probability density
of the Log-Normal3 distribution given parameters (\zeta
, lower bounds; \mu_{\mathrm{log}}
, location; and \sigma_{\mathrm{log}}
, scale) computed by parln3
. The probability density function function (same as Generalized Normal distribution, pdfgno
) is
f(x) = \frac{\exp(\kappa Y - Y^2/2)}{\alpha \sqrt{2\pi}} \mbox{,}
where Y
is
Y = \frac{\log(x - \zeta) - \mu_{\mathrm{log}}}{\sigma_{\mathrm{log}}}\mbox{,}
where \zeta
is the lower bounds (real space) for which \zeta < \lambda_1 - \lambda_2
(checked in are.parln3.valid
), \mu_{\mathrm{log}}
be the mean in natural logarithmic space, and \sigma_{\mathrm{log}}
be the standard deviation in natural logarithm space for which \sigma_{\mathrm{log}} > 0
(checked in are.parln3.valid
) is obvious because this parameter has an analogy to the second product moment. Letting \eta = \exp(\mu_{\mathrm{log}})
, the parameters of the Generalized Normal are \zeta + \eta
, \alpha = \eta\sigma_{\mathrm{log}}
, and \kappa = -\sigma_{\mathrm{log}}
. At this point, the algorithms (pdfgno
) for the Generalized Normal provide the functional core.
Usage
pdfln3(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Note
The parameterization of the Log-Normal3 results in ready support for either a known or unknown lower bounds. Details regarding the parameter fitting and control of the \zeta
parameter can be seen under the Details section in parln3
.
Author(s)
W.H. Asquith
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
See Also
cdfln3
, qualn3
, lmomln3
, parln3
, pdfgno
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
ln3 <- parln3(lmr); gno <- pargno(lmr)
x <- qualn3(0.5,ln3)
pdfln3(x,ln3) # 0.008053616
pdfgno(x,gno) # 0.008053616 (the distributions are the same, but see Note)