| pdfkur {lmomco} | R Documentation |
Probability Density Function of the Kumaraswamy Distribution
Description
This function computes the probability density
of the Kumaraswamy distribution given parameters (\alpha and \beta) computed by parkur. The probability density function is
f(x) = \alpha\beta x^{\alpha - 1}(1-x^\alpha)^{\beta-1} \mbox{,}
where f(x) is the nonexceedance probability for quantile x,
\alpha is a shape parameter, and \beta is a shape parameter.
Usage
pdfkur(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Jones, M.C., 2009, Kumaraswamy's distribution—A beta-type distribution with some tractability advantages: Statistical Methodology, v. 6, pp. 70–81.
See Also
cdfkur, quakur, lmomkur, parkur
Examples
lmr <- lmoms(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
kur <- parkur(lmr)
x <- quakur(0.5,kur)
pdfkur(x,kur)
[Package lmomco version 2.5.1 Index]