pdfgpa {lmomco} | R Documentation |
Probability Density Function of the Generalized Pareto Distribution
Description
This function computes the probability density of the Generalized Pareto distribution given parameters (\xi
, \alpha
, and \kappa
) computed by pargpa
. The probability density function is
f(x) = \alpha^{-1} \exp(-(1-\kappa)Y) \mbox{,}
where Y
is
Y = -\kappa^{-1} \log\left(1 - \frac{\kappa(x - \xi)}{\alpha}\right)\mbox{,}
for \kappa \ne 0
, and
Y = (x - \xi)/\alpha\mbox{,}
for \kappa = 0
, where f(x)
is the probability density for quantile x
, \xi
is a location parameter, \alpha
is a scale parameter, and \kappa
is a shape parameter. The range of x
is \xi \le x \le \xi + \alpha/\kappa
if k > 0
; \xi \le x < \infty
if \kappa \le 0
. Note that the shape parameter \kappa
parameterization of the distribution herein follows that in tradition by the greater L-moment community and others use a sign reversal on \kappa
. (The evd package is one example.)
Usage
pdfgpa(x, para, paracheck=TRUE)
Arguments
x |
A real value vector. |
para |
|
paracheck |
A logical switch as to whether the validity of the parameters should be checked. |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124, doi:10.1111/j.2517-6161.1990.tb01775.x.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfgpa
, quagpa
, lmomgpa
, pargpa
Examples
lmr <- lmoms(c(123, 34, 4, 654, 37, 78))
gpa <- pargpa(lmr)
x <- quagpa(0.5, gpa)
pdfgpa( x, gpa)
## Not run:
# We explore using maximum likelihood for GPA estimation on its density function
# with stress testing near the K > -1 lower limit, K near zero, and then large K
# producing extreme densities. We check the convergence and check on parameters
# back estimating the mean. The experiment is designed that with repeated
# operations that convergence "failures" in stats::optim()
# 1 'indicates that the iteration limit maxit had been reached'
# 10 'indicates degeneracy of the Nelder-Mead simplex.'
# With the 10 being a bit more common and 1 but still for many runs convergence
# at K = 8 is still attainable. Also, note the care in the construction of the
# ptransf and pretransf for the honoring the GPA parameter space.
small <- .Machine$double.eps; n <- 1000 # samples
for(k in c(-1+small, -0.99, -1/2, -small, 0, 1/2, 8)) {
names(k) <- "myKappa"
gpa <- vec2par(c(2, 2, k), type="gpa")
x <- rlmomco(n, gpa)
mu1 <- mean(x); names(mu1) <- "mean"
cv1 <- NA; names(cv1) <- "converge"
mle <- mle2par(x, type="gpa", init.para=pargpa(lmoms(x)),
ptransf=function(t) { c(t[1], log(t[2]), log(t[3] +1)) },
pretransf=function(t) { c(t[1], exp(t[2]), exp(t[3])-1) },
null.on.not.converge=FALSE)
mu2 <- lmomgpa(mle)$lambdas[1]; names(mu2) <- "backMean"
cv2 <- mle$optim$convergence; names(cv2) <- "converge"
print(round(c(k, cv1, mu1, gpa$para), digits=5))
print(round(c(k, cv2, mu2, mle$para), digits=5))
} #
## End(Not run)