pdfgov {lmomco} | R Documentation |
Probability Density Function of the Govindarajulu Distribution
Description
This function computes the probability density of the Govindarajulu distribution given parameters (\xi
, \alpha
, and \beta
) computed by pargov
. The probability density function is
f(x) = [\alpha\beta(\beta+1)]^{-1} [F(x)]^{1-\beta} [1 - F(x)]^{-1} \mbox{,}
where f(x)
is the probability density for quantile x
, F(x)
the cumulative distribution function or nonexceedance probability at x
, \xi
is a location parameter, \alpha
is a scale parameter, and \beta
is a shape parameter.
Usage
pdfgov(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton.
Nair, N.U., Sankaran, P.G., Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.
Nair, N.U., Sankaran, P.G., and Vineshkumar, B., 2012, The Govindarajulu distribution—Some Properties and applications: Communications in Statistics, Theory and Methods, v. 41, no. 24, pp. 4391–4406.
See Also
cdfgov
, quagov
, lmomgov
, pargov
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
gov <- pargov(lmr)
x <- quagov(0.5,gov)
pdfgov(x,gov)