| pdfgov {lmomco} | R Documentation |
Probability Density Function of the Govindarajulu Distribution
Description
This function computes the probability density of the Govindarajulu distribution given parameters (\xi, \alpha, and \beta) computed by pargov. The probability density function is
f(x) = [\alpha\beta(\beta+1)]^{-1} [F(x)]^{1-\beta} [1 - F(x)]^{-1} \mbox{,}
where f(x) is the probability density for quantile x, F(x) the cumulative distribution function or nonexceedance probability at x, \xi is a location parameter, \alpha is a scale parameter, and \beta is a shape parameter.
Usage
pdfgov(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton.
Nair, N.U., Sankaran, P.G., Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.
Nair, N.U., Sankaran, P.G., and Vineshkumar, B., 2012, The Govindarajulu distribution—Some Properties and applications: Communications in Statistics, Theory and Methods, v. 41, no. 24, pp. 4391–4406.
See Also
cdfgov, quagov, lmomgov, pargov
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
gov <- pargov(lmr)
x <- quagov(0.5,gov)
pdfgov(x,gov)