pdfgno {lmomco} | R Documentation |
Probability Density Function of the Generalized Normal Distribution
Description
This function computes the probability density of the Generalized Normal distribution given parameters (\xi
, \alpha
, and \kappa
) computed by pargno
. The probability density function function is
f(x) = \frac{\exp(\kappa Y - Y^2/2)}{\alpha \sqrt{2\pi}} \mbox{,}
where Y
is
Y = -\kappa^{-1} \log\left(1 - \frac{\kappa(x-\xi)}{\alpha}\right)\mbox{,}
for \kappa \ne 0
, and
Y = (x-\xi)/\alpha\mbox{,}
for \kappa = 0
, where f(x)
is the probability density for quantile x
, \xi
is a location parameter, \alpha
is a scale parameter, and \kappa
is a shape parameter.
Usage
pdfgno(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfgno
, quagno
, lmomgno
, pargno
, pdfln3
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
gno <- pargno(lmr)
x <- quagno(0.5,gno)
pdfgno(x,gno)