| pdfgno {lmomco} | R Documentation |
Probability Density Function of the Generalized Normal Distribution
Description
This function computes the probability density of the Generalized Normal distribution given parameters (\xi, \alpha, and \kappa) computed by pargno. The probability density function function is
f(x) = \frac{\exp(\kappa Y - Y^2/2)}{\alpha \sqrt{2\pi}} \mbox{,}
where Y is
Y = -\kappa^{-1} \log\left(1 - \frac{\kappa(x-\xi)}{\alpha}\right)\mbox{,}
for \kappa \ne 0, and
Y = (x-\xi)/\alpha\mbox{,}
for \kappa = 0, where f(x) is the probability density for quantile x, \xi is a location parameter, \alpha is a scale parameter, and \kappa is a shape parameter.
Usage
pdfgno(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfgno, quagno, lmomgno, pargno, pdfln3
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
gno <- pargno(lmr)
x <- quagno(0.5,gno)
pdfgno(x,gno)