pdfgep {lmomco} | R Documentation |
Probability Density Function of the Generalized Exponential Poisson Distribution
Description
This function computes the probability density of the Generalized Exponential Poisson distribution given parameters (\beta
, \kappa
, and h
) computed by pargep
. The probability density function is
f(x) = \frac{\kappa h \eta}{[1 - \exp(-h)]^\kappa}{1 - \exp[-h + h\exp(-\eta x)}\times\exp[-h - \eta x + h\exp(-\eta x)]\mbox{,}
where F(x)
is the nonexceedance probability for quantile x > 0
, \eta = 1/\beta
, \beta > 0
is a scale parameter, \kappa > 0
is a shape parameter, and h > 0
is another shape parameter.
Usage
pdfgep(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Barreto-Souza, W., and Cribari-Neto, F., 2009, A generalization of the exponential-Poisson distribution: Statistics and Probability, 79, pp. 2493–2500.
See Also
pdfgep
, quagep
, lmomgep
, pargep
Examples
pdfgep(0.5, vec2par(c(10,2.9,1.5), type="gep"))
## Not run:
x <- seq(0,3, by=0.01); ylim <- c(0,1.5)
plot(NA,NA, xlim=range(x), ylim=ylim, xlab="x", ylab="f(x)")
mtext("Barreto-Souza and Cribari-Neto (2009, fig. 1)")
K <- c(0.1, 1, 5, 10)
for(i in 1:length(K)) {
gep <- vec2par(c(2,K[i],1), type="gep"); lines(x, pdfgep(x, gep), lty=i)
}
## End(Not run)