pdfexp {lmomco} | R Documentation |
Probability Density Function of the Exponential Distribution
Description
This function computes the probability density
of the Exponential distribution given parameters (\xi
and \alpha
) computed by parexp
. The probability density function is
f(x) = \alpha^{-1}\exp(Y)\mbox{,}
where Y
is
Y = \left(\frac{-(x - \xi)}{\alpha}\right)\mbox{,}
where f(x)
is the probability density for the quantile x
,
\xi
is a location parameter, and \alpha
is a scale parameter.
Usage
pdfexp(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfexp
, quaexp
, lmomexp
, parexp
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
expp <- parexp(lmr)
x <- quaexp(.5,expp)
pdfexp(x,expp)