| pdfexp {lmomco} | R Documentation | 
Probability Density Function of the Exponential Distribution
Description
This function computes the probability density
of the Exponential distribution given parameters (\xi and \alpha)  computed by parexp. The probability density function  is
f(x) = \alpha^{-1}\exp(Y)\mbox{,}
where Y is
Y = \left(\frac{-(x - \xi)}{\alpha}\right)\mbox{,}
where f(x) is the probability density for the quantile x,
\xi is a location parameter, and \alpha is a scale parameter.
Usage
pdfexp(x, para)
Arguments
| x | A real value vector. | 
| para | 
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfexp, quaexp, lmomexp, parexp
Examples
  lmr <- lmoms(c(123,34,4,654,37,78))
  expp <- parexp(lmr)
  x <- quaexp(.5,expp)
  pdfexp(x,expp)