| pdfcau {lmomco} | R Documentation |
Probability Density Function of the Cauchy Distribution
Description
This function computes the probability density
of the Cauchy distribution given parameters (\xi and \alpha) provided by parcau. The probability density function is
f(x) = \left(\pi \alpha \left[1 + \left({\frac{x-\xi}{\alpha}}\right)^2\right] \right)^{-1}\mbox{,}
where f(x) is the probability density for quantile x,
\xi is a location parameter, and \alpha is a scale parameter.
Usage
pdfcau(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f) for x.
Author(s)
W.H. Asquith
References
Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, vol. 43, pp. 299–314.
Evans, Merran, Hastings, Nicholas, Peacock, J.B., 2000, Statistical distributions: 3rd ed., Wiley, New York.
Gilchrist, W.G., 2000, Statistical modeling with quantile functions: Chapman and Hall/CRC, Boca Raton, FL.
See Also
cdfcau, quacau, lmomcau, parcau, vec2par
Examples
cau <- vec2par(c(12,12),type='cau')
x <- quacau(0.5,cau)
pdfcau(x,cau)