pdfcau {lmomco} | R Documentation |
Probability Density Function of the Cauchy Distribution
Description
This function computes the probability density
of the Cauchy distribution given parameters (\xi
and \alpha
) provided by parcau
. The probability density function is
f(x) = \left(\pi \alpha \left[1 + \left({\frac{x-\xi}{\alpha}}\right)^2\right] \right)^{-1}\mbox{,}
where f(x)
is the probability density for quantile x
,
\xi
is a location parameter, and \alpha
is a scale parameter.
Usage
pdfcau(x, para)
Arguments
x |
A real value vector. |
para |
Value
Probability density (f
) for x
.
Author(s)
W.H. Asquith
References
Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, vol. 43, pp. 299–314.
Evans, Merran, Hastings, Nicholas, Peacock, J.B., 2000, Statistical distributions: 3rd ed., Wiley, New York.
Gilchrist, W.G., 2000, Statistical modeling with quantile functions: Chapman and Hall/CRC, Boca Raton, FL.
See Also
cdfcau
, quacau
, lmomcau
, parcau
, vec2par
Examples
cau <- vec2par(c(12,12),type='cau')
x <- quacau(0.5,cau)
pdfcau(x,cau)