| parln3 {lmomco} | R Documentation |
Estimate the Parameters of the 3-Parameter Log-Normal Distribution
Description
This function estimates the parameters (\zeta, lower bounds; \mu_{\mathrm{log}}, location; and \sigma_{\mathrm{log}}, scale) of the Log-Normal3 distribution given the L-moments of the data in an L-moment object such as that returned by lmoms. The relations between distribution parameters and L-moments are seen under lmomln3. The function uses algorithms of the Generalized Normal for core computations. Also, if \tau_3 \le 0, then the Log-Normal3 distribution can not be fit, however reversing the data alleviates this problem.
Usage
parln3(lmom, zeta=NULL, checklmom=TRUE, ...)
Arguments
lmom |
|
zeta |
Lower bounds, if |
checklmom |
Should the |
... |
Other arguments to pass. |
Details
Let the L-moments by in variable lmr, if the \zeta (lower bounds) is unknown, then the algorithms return the same fit as the Generalized Normal will attain. However, pargno does not have intrinsic control on the lower bounds and parln3 does. The \lambda_1, \lambda_2, and \tau_3 are used in the fitting for pargno and parln3 but only \lambda_1 and \lambda_2 are used when the \zeta is provided as in parln3(lmr, zeta=0). In otherwords, if \zeta is known, then \tau_3 is not used and shaping comes from the choice of \zeta.
Value
An R list is returned.
type |
The type of distribution: |
para |
The parameters of the distribution. |
source |
The source of the parameters: “parln3”. |
Author(s)
W.H. Asquith
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
See Also
lmomln3,
cdfln3, pdfln3, qualn3, pargno
Examples
lmr <- lmoms(rnorm(20))
parln3(lmr)
## Not run:
# Handling condition of negative L-skew
# Data reversal looks like: Y <- -X, but let us use an example
# on the L-moments themselves.
lmr.pos <- vec2lmom(c(100, 45, -0.1)) # parln3(lmr.pos) fails
lmr.neg <- lmr.pos
lmr.neg$lambdas[1] <- -lmr.neg$lambdas[1]
lmr.neg$ratios[3] <- -lmr.neg$ratios[3]
F <- nonexceeds()
plot(F, -qualn3(1-F, parln3(lmr.neg)), type="l", lwd=3, col=2) # red line
lines(F, quagno(F, pargno(lmr.pos))) # black line
## End(Not run)