pargpa {lmomco} | R Documentation |
Estimate the Parameters of the Generalized Pareto Distribution
Description
This function estimates the parameters of the Generalized Pareto distribution given the L-moments of the data in an ordinary L-moment object (lmoms
) or a trimmed L-moment object (TLmoms
for t=1
). The relations between distribution parameters and L-moments are seen under lmomgpa
or lmomTLgpa
.
Usage
pargpa(lmom, zeta=1, xi=NULL, checklmom=TRUE, ...)
Arguments
lmom |
An L-moment object created by |
zeta |
The right censoring fraction. If less than unity then a dispatch to the |
xi |
The lower limit of the distribution. If |
checklmom |
Should the |
... |
Other arguments to pass. |
Value
An R list
is returned.
type |
The type of distribution: |
para |
The parameters of the distribution. |
source |
The source of the parameters: “pargpa”. |
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
lmomgpa
,
cdfgpa
, pdfgpa
, quagpa
Examples
X <- rexp(200)
lmr <- lmoms(X)
P1 <- pargpa(lmr)
P2 <- pargpa(lmr, xi=0.25)
## Not run:
F <- nonexceeds()
plot(pp(X), sort(X))
lines(F, quagpa(F,P1)) # black line
lines(F, quagpa(F,P2), col=2) # red line
## End(Not run)