| lrzlmomco {lmomco} | R Documentation |
Lorenz Curve of the Distributions
Description
This function computes the Lorenz Curve for quantile function x(F) (par2qua, qlmomco). The function is defined by Nair et al. (2013, p. 174) as
L(u) = \frac{1}{\mu}\int_0^u x(p)\; \mathrm{d}p\mbox{,}
where L(u) is the Lorenz curve for nonexceedance probability u. The Lorenz curve is related to the Bonferroni curve (B(u), bfrlmomco) by
L(u) = \mu B(u)\mbox{.}
Usage
lrzlmomco(f, para)
Arguments
f |
Nonexceedance probability ( |
para |
Value
Lorzen curve value for F.
Author(s)
W.H. Asquith
References
Nair, N.U., Sankaran, P.G., and Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.
See Also
Examples
# It is easiest to think about residual life as starting at the origin, units in days.
A <- vec2par(c(0.0, 2649, 2.11), type="gov") # so set lower bounds = 0.0
f <- c(0.25, 0.75) # Both computations report: 0.02402977 and 0.51653731
Lu1 <- lrzlmomco(f, A)
Lu2 <- f*bfrlmomco(f, A)
# The Lorenz curve is related to the Gini index (G), which is L-CV:
"afunc" <- function(u) { return(lrzlmomco(f=u, A)) }
L <- integrate(afunc, lower=0, upper=1)$value
G <- 1 - 2*L # 0.4129159
G <- 1 - expect.min.ostat(2,para=A,qua=quagov)*cmlmomco(f=0,A) # 0.4129159
LCV <- lmomgov(A)$ratios[2] # 0.41291585
[Package lmomco version 2.5.1 Index]