lmomsRCmark {lmomco} | R Documentation |
Sample L-moments Moments for Right-Tail Censoring by a Marking Variable
Description
Compute the sample L-moments for right-tail censored data set in which censored data values are identified by a marking variable. Extension of left-tail censoring can be made using fliplmoms
and the example therein.
Usage
lmomsRCmark(x, rcmark=NULL, nmom=5, flip=NA, flipfactor=1.1)
Arguments
x |
A vector of data values. |
rcmark |
The right-tail censoring (upper) marking variable for unknown threshold: 0 is uncensored, 1 is censored. |
nmom |
Number of L-moments to return. |
flip |
Do the data require flipping so that left-censored data can be processed as such. If the flip is a logical and |
flipfactor |
The value that is greater than 1, which is multiplied on the maximum of |
Value
An R list
is returned.
lambdas |
Vector of the L-moments. First element is
|
ratios |
Vector of the L-moment ratios. Second element is
|
trim |
Level of symmetrical trimming used in the computation, which will equal |
leftrim |
Level of left-tail trimming used in the computation. This is not currently implemented as no one has done the derivations. |
rightrim |
Level of right-tail trimming used in the computation. This is not currently implemented as no one has done the derivations. |
n |
The complete sample size. |
n.cen |
The number of right-censored data values. |
flip |
The flip used in the computations for support of left-tail censoring. |
source |
An attribute identifying the computational source of the L-moments: “lmomsRCmark”. |
Author(s)
W.H. Asquith
References
Wang, Dongliang, Hutson, A.D., Miecznikowski, J.C., 2010, L-moment estimation for parametric survival models given censored data: Statistical Methodology, v. 7, no. 6, pp. 655–667.
Helsel, D.R., 2005, Nondetects and data analysis—Statistics for censored environmental data: Hoboken, New Jersey, John Wiley, 250 p.
See Also
Examples
# Efron, B., 1988, Logistic regression, survival analysis, and the
# Kaplan-Meier curve: Journal of the American Statistical Association,
# v. 83, no. 402, pp.414--425
# Survival time measured in days for 51 patients with a marking
# variable in the "time,mark" ensemble. If marking variable is 1,
# then the time is right-censored by an unknown censoring threshold.
Efron <-
c(7,0, 34,0, 42,0, 63,0, 64,0, 74,1, 83,0, 84,0, 91,0,
108,0, 112,0, 129,0, 133,0, 133,0, 139,0, 140,0, 140,0,
146,0, 149,0, 154,0, 157,0, 160,0, 160,0, 165,0, 173,0,
176,0, 185,1, 218,0, 225,0, 241,0, 248,0, 273,0, 277,0,
279,1, 297,0, 319,1, 405,0, 417,0, 420,0, 440,0, 523,1,
523,0, 583,0, 594,0, 1101,0, 1116,1, 1146,0, 1226,1,
1349,1, 1412,1, 1417,1);
# Break up the ensembles into to vectors
ix <- seq(1,length(Efron),by=2)
T <- Efron[ix]
Efron.data <- T;
Efron.rcmark <- Efron[(ix+1)]
lmr.RC <- lmomsRCmark(Efron.data, rcmark=Efron.rcmark)
lmr.ub <- lmoms(Efron.data)
lmr.noRC <- lmomsRCmark(Efron.data)
PP <- pp(Efron.data)
plot(PP, Efron.data, col=(Efron.rcmark+1), ylab="DATA")
lines(PP, qlmomco(PP, lmom2par(lmr.noRC, type="kap")), lwd=3, col=8)
lines(PP, qlmomco(PP, lmom2par(lmr.ub, type="kap")))
lines(PP, qlmomco(PP, lmom2par(lmr.RC, type="kap")), lwd=2, col=2)
legend(0,1000,c("uncensored L-moments by indicator (Kappa distribution)",
"unbiased L-moments (Kappa)",
"right-censored L-moments by indicator (Kappa distribution)"),
lwd=c(3,1,2), col=c(8,1,2))
########
ZF <- 5 # discharge of undetection of streamflow
Q <- c(rep(ZF,8), 116, 34, 56, 78, 909, 12, 56, 45, 560, 300, 2500)
Qc <- Q == ZF; Qc <- as.numeric(Qc)
lmr <- lmoms(Q)
lmr.cen <- lmomsRCmark(Q, rcmark=Qc, flip=TRUE)
flip <- lmr.cen$flip
fit <- pargev(lmr); fit.cen <- pargev(lmr.cen)
F <- seq(0.001, 0.999, by=0.001)
Qfit <- qlmomco( F, fit )
Qfit.cen <- flip - qlmomco(1 - F, fit.cen) # remember to reverse qdf
plot(pp(Q),sort(Q), log="y", xlab="NONEXCEED PROB.", ylab="QUANTILE")
lines(F, Qfit); lines(F, Qfit.cen,col=2)