lmomglo {lmomco} | R Documentation |
L-moments of the Generalized Logistic Distribution
Description
This function estimates the L-moments of the Generalized Logistic distribution given the parameters (\xi
, \alpha
, and \kappa
) from parglo
. The L-moments in terms of the parameters are
\lambda_1 = \xi + \alpha \left(\frac{1}{\kappa} - \frac{\pi}{\sin(\kappa\pi)}\right) \mbox{,}
\lambda_2 = \frac{\alpha \kappa \pi}{\sin(\kappa\pi)} \mbox{,}
\tau_3 = -\kappa \mbox{, and}
\tau_4 = \frac{(1+5\tau_3^2)}{6} = \frac{(1+5\kappa^2)}{6}\mbox{.}
Usage
lmomglo(para)
Arguments
para |
The parameters of the distribution. |
Value
An R list
is returned.
lambdas |
Vector of the L-moments. First element is
|
ratios |
Vector of the L-moment ratios. Second element is
|
trim |
Level of symmetrical trimming used in the computation, which is |
leftrim |
Level of left-tail trimming used in the computation, which is |
rightrim |
Level of right-tail trimming used in the computation, which is |
source |
An attribute identifying the computational source of the L-moments: “lmomglo”. |
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, pp. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
parglo
, cdfglo
, pdfglo
, quaglo
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
lmr
lmomglo(parglo(lmr))