lmomgld {lmomco} | R Documentation |
L-moments of the Generalized Lambda Distribution
Description
This function estimates the L-moments of the Generalized Lambda distribution given the parameters (ξ
, α
, κ
, and h
) from vec2par
. The L-moments in terms of the parameters are complicated; however, there are analytical solutions. There are no simple expressions of the parameters in terms of the L-moments. The first L-moment or the mean is
λ1=ξ+α(κ+11−h+11)\mbox.
The second L-moment or L-scale in terms of the parameters and the mean is
λ2=ξ+(κ+2)2α−2α(h+11−h+21)−ξ\mbox.
The third L-moment in terms of the parameters, the mean, and L-scale is
Y=2ξ+(κ+3)6α−3(α+ξ)+ξ\mbox,and
λ3=Y+6α(h+22−h+31−h+11)\mbox.
The fourth L-moment in termes of the parameters and the first three L-moments is
Y=h+4−3(h+22−h+31−h+11)\mbox,
Z=420ξ+(κ+4)20α−20Yα\mbox,and
λ4=Z−5(κ+3(α+ξ)−ξ)+6(α+ξ)−ξ\mbox.
It is conventional to express L-moments in terms of only the parameters and not the other L-moments. Lengthy algebra and further manipulation yields such a system of equations. The L-moments are
λ1=ξ+α(κ+11−h+11)\mbox,
λ2=α((κ+2)(κ+1)κ+(h+2)(h+1)h)\mbox,
λ3=α((κ+3)(κ+2)(κ+1)κ(κ−1)−(h+3)(h+2)(h+1)h(h−1))\mbox,and
λ4=α((κ+4)(κ+3)(κ+2)(κ+1)κ(κ−2)(κ−1)+(h+4)(h+3)(h+2)(h+1)h(h−2)(h−1))\mbox.
The L-moment ratios are
τ3=(κ+3)(h+3)×[κ(h+2)(h+1)+h(κ+2)(κ+1)]κ(κ−1)(h+3)(h+2)(h+1)−h(h−1)(κ+3)(κ+2)(κ+1)\mbox,and
τ4=(κ+4)(h+4)(κ+3)(h+3)×[κ(h+2)(h+1)+h(κ+2)(κ+1)]κ(κ−2)(κ−1)(h+4)(h+3)(h+2)(h+1)+h(h−2)(h−1)(κ+4)(κ+3)(κ+2)(κ+1)\mbox.
The pattern being established through symmetry, even higher L-moment ratios are readily obtained. Note the alternating substraction and addition of the two terms in the numerator of the L-moment ratios (τr
). For odd r≥3
substraction is seen and for even r≥3
addition is seen. For example, the fifth L-moment ratio is
N1=κ(κ−3)(κ−2)(κ−1)(h+5)(h+4)(h+3)(h+2)(h+1)\mbox,
N2=h(h−3)(h−2)(h−1)(κ+5)(κ+4)(κ+3)(κ+2)(κ+1)\mbox,
D1=(κ+5)(h+5)(κ+4)(h+4)(κ+3)(h+3)\mbox,
D2=[κ(h+2)(h+1)+h(κ+2)(κ+1)]\mbox,and
τ5=D1×D2N1−N2\mbox.
By inspection the τr
equations are not applicable for negative integer values k={−1,−2,−3,−4,…}
and h={−1,−2,−3,−4,…}
as division by zero will result. There are additional, but difficult to formulate, restrictions on the parameters both to define a valid Generalized Lambda distribution as well as valid L-moments. Verification of the parameters is conducted through are.pargld.valid
, and verification of the L-moment validity is conducted through are.lmom.valid
.
Usage
lmomgld(para)
Arguments
para |
The parameters of the distribution.
|
Value
An R list is returned.
lambdas |
Vector of the L-moments. First element is
λ1 , second element is λ2 , and so on.
|
ratios |
Vector of the L-moment ratios. Second element is
τ , third element is τ3 and so on.
|
trim |
Level of symmetrical trimming used in the computation, which is 0 .
|
leftrim |
Level of left-tail trimming used in the computation, which is NULL .
|
rightrim |
Level of right-tail trimming used in the computation, which is NULL .
|
source |
An attribute identifying the computational source
of the L-moments: “lmomgld”.
|
Author(s)
W.H. Asquith
Source
Derivations conducted by W.H. Asquith on February 11 and 12, 2006.
References
Asquith, W.H., 2007, L-moments and TL-moments of the generalized lambda distribution: Computational Statistics and Data Analysis, v. 51, no. 9, pp. 4484–4496.
Karvanen, J., Eriksson, J., and Koivunen, V., 2002, Adaptive score functions for maximum likelihood ICA: Journal of VLSI Signal Processing, v. 32, pp. 82–92.
Karian, Z.A., and Dudewicz, E.J., 2000, Fitting statistical distibutions—The generalized lambda distribution and generalized bootstrap methods: CRC Press, Boca Raton, FL, 438 p.
See Also
pargld
, cdfgld
, pdfgld
, quagld
Examples
## Not run:
lmomgld(vec2par(c(10,10,0.4,1.3),type='gld'))
## End(Not run)
## Not run:
PARgld <- vec2par(c(0,1,1,.5), type="gld")
theoTLmoms(PARgld, nmom=6)
lmomgld(PARgld)
## End(Not run)
[Package
lmomco version 2.5.1
Index]