| lkhlmomco {lmomco} | R Documentation |
Leimkuhler Curve of the Distributions
Description
This function computes the Leimkuhler Curve for quantile function x(F) (par2qua, qlmomco). The function is defined by Nair et al. (2013, p. 181) as
K(u) = 1 - \frac{1}{\mu}\int_0^{1-u} x(p)\; \mathrm{d}p\mbox{,}
where K(u) is Leimkuhler curve for nonexceedance probability u. The Leimkuhler curve is related to the Lorenz curve (L(u), lrzlmomco) by
K(u) = 1-L(1-u)\mbox{,}
and related to the reversed residual mean quantile function (R(u), rrmlmomco) and conditional mean (\mu, cmlmomco) for u=0 by
K(u) = \frac{1}{\mu} [\mu - (1-u)(x(1-u) - R(1-u))] \mbox{.}
Usage
lkhlmomco(f, para)
Arguments
f |
Nonexceedance probability ( |
para |
Value
Leimkuhler curve value for F.
Author(s)
W.H. Asquith
References
Nair, N.U., Sankaran, P.G., and Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.
See Also
Examples
# It is easiest to think about residual life as starting at the origin, units in days.
A <- vec2par(c(0.0, 2649, 2.11), type="gov") # so set lower bounds = 0.0
"afunc" <- function(u) { return(par2qua(u,A,paracheck=FALSE)) }
f <- 0.35 # All three computations report: Ku = 0.6413727
Ku1 <- 1 - 1/cmlmomco(f=0,A) * integrate(afunc,0,1-f)$value
Ku2 <- (cmlmomco(0,A) - (1-f)*(quagov(1-f,A) - rrmlmomco(1-f,A)))/cmlmomco(0,A)
Ku3 <- lkhlmomco(f, A)