cdftexp {lmomco} | R Documentation |
Cumulative Distribution Function of the Truncated Exponential Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Truncated Exponential distribution given parameters (\psi
and \alpha
) computed by partexp
. The parameter \psi
is the right truncation of the distribution and \alpha
is a scale parameter. The cumulative distribution function, letting \beta = 1/\alpha
to match nomenclature of Vogel and others (2008), is
F(x) = \frac{1-\mathrm{exp}(-\beta{t})}{1-\mathrm{exp}(-\beta\psi)}\mbox{,}
where F(x)
is the nonexceedance probability for the quantile 0 \le x \le \psi
and \psi > 0
and \alpha > 0
. This distribution represents a nonstationary Poisson process.
The distribution is restricted to a narrow range of L-CV (\tau_2 = \lambda_2/\lambda_1
). If \tau_2 = 1/3
, the process represented is a stationary Poisson for which the cumulative distribution function is simply the uniform distribution and F(x) = x/\psi
. If \tau_2 = 1/2
, then the distribution is represented as the usual exponential distribution with a location parameter of zero and a rate parameter \beta
(scale parameter \alpha = 1/\beta
). These two limiting conditions are supported.
Usage
cdftexp(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F
) for x
.
Author(s)
W.H. Asquith
References
Vogel, R.M., Hosking, J.R.M., Elphick, C.S., Roberts, D.L., and Reed, J.M., 2008, Goodness of fit of probability distributions for sightings as species approach extinction: Bulletin of Mathematical Biology, DOI 10.1007/s11538-008-9377-3, 19 p.
See Also
pdftexp
, quatexp
, lmomtexp
, partexp
Examples
cdftexp(50,partexp(vec2lmom(c(40,0.38), lscale=FALSE)))
## Not run:
F <- seq(0,1,by=0.001)
A <- partexp(vec2lmom(c(100, 1/2), lscale=FALSE))
x <- quatexp(F, A)
plot(x, cdftexp(x, A), pch=16, type='l')
by <- 0.01; lcvs <- c(1/3, seq(1/3+by, 1/2-by, by=by), 1/2)
reds <- (lcvs - 1/3)/max(lcvs - 1/3)
for(lcv in lcvs) {
A <- partexp(vec2lmom(c(100, lcv), lscale=FALSE))
x <- quatexp(F, A)
lines(x, cdftexp(x, A), pch=16, col=rgb(reds[lcvs == lcv],0,0))
}
# Vogel and others (2008) example sighting times for the bird
# Eskimo Curlew, inspection shows that these are fairly uniform.
# There is a sighting about every year to two.
T <- c(1946, 1947, 1948, 1950, 1955, 1956, 1959, 1960, 1961,
1962, 1963, 1964, 1968, 1970, 1972, 1973, 1974, 1976,
1977, 1980, 1981, 1982, 1982, 1983, 1985)
R <- 1945 # beginning of record
S <- T - R
lmr <- lmoms(S)
PARcurlew <- partexp(lmr)
# read the warning message and then force the texp to the
# stationary process model (min(tau_2) = 1/3).
lmr$ratios[2] <- 1/3
lmr$lambdas[2] <- lmr$lambdas[1]*lmr$ratios[2]
PARcurlew <- partexp(lmr)
Xmax <- quatexp(1, PARcurlew)
X <- seq(0,Xmax, by=.1)
plot(X, cdftexp(X,PARcurlew), type="l")
# or use the MVUE estimator
TE <- max(S)*((length(S)+1)/length(S)) # Time of Extinction
lines(X, punif(X, min=0, max=TE), col=2)
## End(Not run)