| cdfsmd {lmomco} | R Documentation |
Cumulative Distribution Function of the Singh–Maddala Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Singh–Maddala (Burr Type XII) distribution given parameters (a, b, and q) of the distribution computed by parsmd. The cumulative distribution function is
F(x) = 1 - \biggl(1 + \bigl[ (x - \xi) / a \bigr]^b \biggl)^{-q}\mbox{,}
where F(x) is the nonexceedance probability for quantile x with 0 \le x \le \infty, \xi is a location parameter, a is a scale parameter (a > 0), b is a shape parameter (b > 0), and q is another shape parameter (q > 0).
Usage
cdfsmd(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F) for x.
Author(s)
W.H. Asquith
References
Kumar, D., 2017, The Singh–Maddala distribution—Properties and estimation: International Journal of System Assurance Engineering and Management, v. 8, no. S2, 15 p., doi:10.1007/s13198-017-0600-1.
Shahzad, M.N., and Zahid, A., 2013, Parameter estimation of Singh Maddala distribution by moments: International Journal of Advanced Statistics and Probability, v. 1, no. 3, pp. 121–131, doi:10.14419/ijasp.v1i3.1206.
See Also
pdfsmd, quasmd, lmomsmd, parsmd
Examples
# The SMD approximating the normal and use x=0
tau4_of_normal <- 30 * pi^-1 * atan(sqrt(2)) - 9 # from theory
cdfsmd(0, parsmd( vec2lmom( c( -pi, pi, 0, tau4_of_normal ) ) ) ) # 0.7138779
pnorm( 0, mean=-pi, sd=pi*sqrt(pi)) # 0.7136874
## Not run:
t3 <- 0.6
t4 <- (t3 * (1 + 5 * t3))/(5 + t3) # L-kurtosis of GPA from lmrdia()
paraA <- parsmd( vec2lmom( c( -1000, 200, t3, t4-0.02 ) ) )
paraB <- parsmd( vec2lmom( c( -1000, 200, t3, t4 ) ) )
paraC <- parsmd( vec2lmom( c( -1000, 200, t3, t4+0.02 ) ) )
FF <- nonexceeds(); x <- quasmd(FF, paraA)
plot( x, prob2grv(cdfsmd(x, paraA)), col="red", type="l",
xlab="Quantile", ylab="Gumbel Reduced Variate, prob2grv()")
lines(x, prob2grv(cdfsmd(x, paraB)), col="green")
lines(x, prob2grv(cdfsmd(x, paraC)), col="blue" ) #
## End(Not run)