cdflap {lmomco} | R Documentation |
Cumulative Distribution Function of the Laplace Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Laplace distribution given parameters (\xi
and \alpha
) computed by parlap
. The cumulative distribution function is
F(x) = \frac{1}{2} \mathrm{exp}((x-\xi)/\alpha) \mbox{ for } x \le \xi \mbox{,}
and
F(x) = 1 - \frac{1}{2} \mathrm{exp}(-(x-\xi)/\alpha) \mbox{ for } x > \xi \mbox{,}
where F(x)
is the nonexceedance probability for quantile x
,
\xi
is a location parameter, and \alpha
is a scale parameter.
Usage
cdflap(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F
) for x
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1986, The theory of probability weighted moments: IBM Research Report RC12210, T.J. Watson Research Center, Yorktown Heights, New York.
See Also
pdflap
, qualap
, lmomlap
, parlap
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
cdflap(50,parlap(lmr))
[Package lmomco version 2.5.1 Index]