| cdflap {lmomco} | R Documentation |
Cumulative Distribution Function of the Laplace Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Laplace distribution given parameters (\xi and \alpha) computed by parlap. The cumulative distribution function is
F(x) = \frac{1}{2} \mathrm{exp}((x-\xi)/\alpha) \mbox{ for } x \le \xi \mbox{,}
and
F(x) = 1 - \frac{1}{2} \mathrm{exp}(-(x-\xi)/\alpha) \mbox{ for } x > \xi \mbox{,}
where F(x) is the nonexceedance probability for quantile x,
\xi is a location parameter, and \alpha is a scale parameter.
Usage
cdflap(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F) for x.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1986, The theory of probability weighted moments: IBM Research Report RC12210, T.J. Watson Research Center, Yorktown Heights, New York.
See Also
pdflap, qualap, lmomlap, parlap
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
cdflap(50,parlap(lmr))
[Package lmomco version 2.5.1 Index]