cdfgep {lmomco} | R Documentation |
Cumulative Distribution Function of the Generalized Exponential Poisson Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Generalized Exponential Poisson distribution given parameters (\beta
, \kappa
, and h
) computed by pargep
. The cumulative distribution function is
F(x) = \left(\frac{1 - \exp[-h + h\exp(-\eta x)]}{1 - \exp(-h)}\right)^\kappa\mbox{,}
where F(x)
is the nonexceedance probability for quantile x > 0
, \eta = 1/\beta
, \beta > 0
is a scale parameter, \kappa > 0
is a shape parameter, and h > 0
is another shape parameter.
Usage
cdfgep(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F
) for x
.
Author(s)
W.H. Asquith
References
Barreto-Souza, W., and Cribari-Neto, F., 2009, A generalization of the exponential-Poisson distribution: Statistics and Probability, 79, pp. 2493–2500.
See Also
pdfgep
, quagep
, lmomgep
, pargep
Examples
gep <- list(para=c(2, 1.5, 3), type="gep")
cdfgep(0.48,gep)