| cdfgep {lmomco} | R Documentation |
Cumulative Distribution Function of the Generalized Exponential Poisson Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Generalized Exponential Poisson distribution given parameters (\beta, \kappa, and h) computed by pargep. The cumulative distribution function is
F(x) = \left(\frac{1 - \exp[-h + h\exp(-\eta x)]}{1 - \exp(-h)}\right)^\kappa\mbox{,}
where F(x) is the nonexceedance probability for quantile x > 0, \eta = 1/\beta, \beta > 0 is a scale parameter, \kappa > 0 is a shape parameter, and h > 0 is another shape parameter.
Usage
cdfgep(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F) for x.
Author(s)
W.H. Asquith
References
Barreto-Souza, W., and Cribari-Neto, F., 2009, A generalization of the exponential-Poisson distribution: Statistics and Probability, 79, pp. 2493–2500.
See Also
pdfgep, quagep, lmomgep, pargep
Examples
gep <- list(para=c(2, 1.5, 3), type="gep")
cdfgep(0.48,gep)