| cdfexp {lmomco} | R Documentation |
Cumulative Distribution Function of the Exponential Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Exponential distribution given parameters (\xi and \alpha computed by parexp. The cumulative distribution function is
F(x) = 1 - \exp(Y)\mbox{,}
where Y is
\frac{-(x - \xi)}{\alpha}\mbox{,}
where F(x) is the nonexceedance probability for the quantile x,
\xi is a location parameter, and \alpha is a scale parameter.
Usage
cdfexp(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F) for x.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, p. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
pdfexp, quaexp, lmomexp, parexp
Examples
lmr <- lmoms(c(123,34,4,654,37,78))
cdfexp(50,parexp(lmr))