| cdfcau {lmomco} | R Documentation |
Cumulative Distribution Function of the Cauchy Distribution
Description
This function computes the cumulative probability or nonexceedance probability of the Cauchy distribution given parameters (\xi and \alpha) computed by parcau. The cumulative distribution function is
F(x) = \frac{\arctan(Y)}{\pi}+0.5 \mbox{,}
where Y is
Y = \frac{x - \xi}{\alpha}\mbox{, and}
where F(x) is the nonexceedance probability for quantile x, \xi is a location parameter, and \alpha is a scale parameter.
Usage
cdfcau(x, para)
Arguments
x |
A real value vector. |
para |
Value
Nonexceedance probability (F) for x.
Author(s)
W.H. Asquith
References
Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, v. 43, pp. 299–314.
Gilchrist, W.G., 2000, Statistical modeling with quantile functions: Chapman and Hall/CRC, Boca Raton, FL.
See Also
pdfcau, quacau, lmomcau, parcau
Examples
para <- c(12,12)
cdfcau(50,vec2par(para,type='cau'))
[Package lmomco version 2.5.1 Index]