bfrlmomco {lmomco} | R Documentation |
Bonferroni Curve of the Distributions
Description
This function computes the Bonferroni Curve for quantile function x(F)
(par2qua
, qlmomco
). The function is defined by Nair et al. (2013, p. 179) as
B(u) = \frac{1}{\mu u}\int_0^u x(p)\; \mathrm{d}p\mbox{,}
where B(u)
is Bonferroni curve for quantile function x(F)
and \mu
is the conditional mean for quantile u=0
(cmlmomco
). The Bonferroni curve is related to the Lorenz curve (L(u)
, lrzlmomco
) by
B(u) = \frac{L(u)}{u}\mbox{.}
Usage
bfrlmomco(f, para)
Arguments
f |
Nonexceedance probability ( |
para |
Value
Bonferroni curve value for F
.
Author(s)
W.H. Asquith
References
Nair, N.U., Sankaran, P.G., and Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.
See Also
Examples
# It is easiest to think about residual life as starting at the origin, units in days.
A <- vec2par(c(0.0, 2649, 2.11), type="gov") # so set lower bounds = 0.0
"afunc" <- function(u) { return(par2qua(u,A,paracheck=FALSE)) }
f <- 0.65 # Both computations report: 0.5517342
Bu1 <- 1/(cmlmomco(f=0,A)*f) * integrate(afunc, 0, f)$value
Bu2 <- bfrlmomco(f, A)
[Package lmomco version 2.5.1 Index]