| bfrlmomco {lmomco} | R Documentation |
Bonferroni Curve of the Distributions
Description
This function computes the Bonferroni Curve for quantile function x(F) (par2qua, qlmomco). The function is defined by Nair et al. (2013, p. 179) as
B(u) = \frac{1}{\mu u}\int_0^u x(p)\; \mathrm{d}p\mbox{,}
where B(u) is Bonferroni curve for quantile function x(F) and \mu is the conditional mean for quantile u=0 (cmlmomco). The Bonferroni curve is related to the Lorenz curve (L(u), lrzlmomco) by
B(u) = \frac{L(u)}{u}\mbox{.}
Usage
bfrlmomco(f, para)
Arguments
f |
Nonexceedance probability ( |
para |
Value
Bonferroni curve value for F.
Author(s)
W.H. Asquith
References
Nair, N.U., Sankaran, P.G., and Balakrishnan, N., 2013, Quantile-based reliability analysis: Springer, New York.
See Also
Examples
# It is easiest to think about residual life as starting at the origin, units in days.
A <- vec2par(c(0.0, 2649, 2.11), type="gov") # so set lower bounds = 0.0
"afunc" <- function(u) { return(par2qua(u,A,paracheck=FALSE)) }
f <- 0.65 # Both computations report: 0.5517342
Bu1 <- 1/(cmlmomco(f=0,A)*f) * integrate(afunc, 0, f)$value
Bu2 <- bfrlmomco(f, A)
[Package lmomco version 2.5.1 Index]