| are.pargld.valid {lmomco} | R Documentation |
Are the Distribution Parameters Consistent with the Generalized Lambda Distribution
Description
Is the distribution parameter object consistent with the corresponding distribution? The distribution functions (cdfgld, pdfgld, quagld, and lmomgld) require consistent parameters to return the cumulative probability (nonexceedance), density, quantile, and L-moments of the distribution, respectively. These functions internally use the are.pargld.valid function.
Usage
are.pargld.valid(para, verbose=FALSE, nowarn=FALSE)
Arguments
para |
A distribution parameter list returned by |
verbose |
A logical switch on additional output to the user—default is |
nowarn |
A logical switch on warning suppression. If |
Details
Karian and Dudewicz (2000) outline valid parameter space of the Generalized Lambda distribution. First, according to Theorem 1.3.3 the distribution is valid if and only if
\alpha(\kappa F^{\kappa - 1} + h(1-F)^{h -1 }) \ge 0 \mbox{.}
for all F \in [0,1]. The are.pargld.valid function tests against this condition by incrementing through [0,1] by dF = 0.0001. This is a brute force method of course. Further, Karian and Dudewicz (2002) provide a diagrammatic representation of regions in \kappa and h space for suitable \alpha in which the distribution is valid. The are.pargld.valid function subsequently checks against the 6 valid regions as a secondary check on Theorem 1.3.3. The regions of the distribution are defined for suitably choosen \alpha by
\mbox{Region 1: } \kappa \le -1 \mbox{ and } h \ge 1 \mbox{,}
\mbox{Region 2: } \kappa \ge 1 \mbox{ and } h \le -1 \mbox{,}
\mbox{Region 3: } \kappa \ge 0 \mbox{ and } h \ge 0 \mbox{,}
\mbox{Region 4: } \kappa \le 0 \mbox{ and } h \le 0 \mbox{,}
\mbox{Region 5: } h \ge (-1/\kappa) \mbox{ and } -1 \ge \kappa \le 0 \mbox{, and}
\mbox{Region 6: } h \le (-1/\kappa) \mbox{ and } h \ge -1 \mbox{ and } \kappa \ge 1 \mbox{.}
Value
TRUE |
If the parameters are |
FALSE |
If the parameters are not |
Note
This function calls is.gld to verify consistency between the distribution parameter object and the intent of the user.
Author(s)
W.H. Asquith
References
Asquith, W.H., 2007, L-moments and TL-moments of the generalized lambda distribution: Computational Statistics and Data Analysis, v. 51, no. 9, pp. 4484–4496.
Karian, Z.A., and Dudewicz, E.J., 2000, Fitting statistical distributions—The generalized lambda distribution and generalized bootstrap methods: CRC Press, Boca Raton, FL, 438 p.
See Also
Examples
## Not run:
para <- vec2par(c(123,34,4,3),type='gld')
if(are.pargld.valid(para)) Q <- quagld(0.5,para)
# The following is an example of inconsistent L-moments for fitting but
# prior to lmomco version 2.1.2 and untrapped error was occurring.
lmr <- lmoms(c(33, 37, 41, 54, 78, 91, 100, 120, 124))
para <- pargld(lmr); are.pargld.valid(para)
## End(Not run)