Lcomoment.correlation {lmomco} | R Documentation |
L-correlation Matrix (L-correlation through Sample L-comoments)
Description
Compute the L-correlation from an L-comoment matrix of order k = 2
. This function assumes that the 2nd order matrix is already computed by the function Lcomoment.matrix
.
Usage
Lcomoment.correlation(L2)
Arguments
L2 |
A |
Details
L-correlation is computed by Lcomoment.coefficients(L2,L2)
where L2
is second order L-comoment matrix. The usual L-scale values as seen from lmom.ub
or lmoms
are along the diagonal. This function does not make use of lmom.ub
or lmoms
and can be used to verify computation of \tau
(coefficient of L-variation).
Value
An R list
is returned.
type |
The type of L-comoment representation in the matrix: “Lcomoment.coefficients”. |
order |
The order of the matrix—extracted from the first matrix in arguments. |
matrix |
A |
Note
The function begins with a capital letter. This is intentionally done so that lower case namespace is preserved. By using a capital letter now, then lcomoment.correlation
remains an available name in future releases.
Author(s)
W.H. Asquith
References
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
Serfling, R., and Xiao, P., 2007, A contribution to multivariate L-moments—L-comoment matrices: Journal of Multivariate Analysis, v. 98, pp. 1765–1781.
See Also
Lcomoment.matrix
, Lcomoment.correlation
Examples
D <- data.frame(X1=rnorm(30), X2=rnorm(30), X3=rnorm(30))
L2 <- Lcomoment.matrix(D,k=2)
RHO <- Lcomoment.correlation(L2)
## Not run:
"SerfXiao.eq17" <-
function(n=25, A=10, B=2, k=4,
method=c("pearson","lcorr"), wrt=c("12", "21")) {
method <- match.arg(method); wrt <- match.arg(wrt)
# X1 is a linear regression on X2
X2 <- rnorm(n); X1 <- A + B*X2 + rnorm(n)
r12p <- cor(X1,X2) # Pearson's product moment correlation
XX <- data.frame(X1=X1, X2=X2) # for the L-comoments
T2 <- Lcomoment.correlation(Lcomoment.matrix(XX, k=2))$matrix
LAMk <- Lcomoment.matrix(XX, k=k)$matrix # L-comoments of order k
if(wrt == "12") { # is X2 the sorted variable?
lmr <- lmoms(X1, nmom=k); Lamk <- LAMk[1,2]; Lcor <- T2[1,2]
} else { # no X1 is the sorted variable (21)
lmr <- lmoms(X2, nmom=k); Lamk <- LAMk[2,1]; Lcor <- T2[2,1]
}
# Serfling and Xiao (2007, eq. 17) state that
# L-comoment_k[12] = corr.coeff * Lmoment_k[1] or
# L-comoment_k[21] = corr.coeff * Lmoment_k[2]
# And with the X1, X2 setup above, Pearson corr. == L-corr.
# There will be some numerical differences for any given sample.
ifelse(method == "pearson",
return(lmr$lambdas[k]*r12p - Lamk),
return(lmr$lambdas[k]*Lcor - Lamk))
# If the above returns a expected value near zero then, their eq.
# is numerically shown to be correct and the estimators are unbiased.
}
# The means should be near zero.
nrep <- 2000; seed <- rnorm(1); set.seed(seed)
mean(replicate(n=nrep, SerfXiao.eq17(method="pearson", k=4)))
set.seed(seed)
mean(replicate(n=nrep, SerfXiao.eq17(method="lcorr", k=4)))
# The variances should nearly be equal.
seed <- rnorm(1); set.seed(seed)
var(replicate(n=nrep, SerfXiao.eq17(method="pearson", k=6)))
set.seed(seed)
var(replicate(n=nrep, SerfXiao.eq17(method="lcorr", k=6)))
## End(Not run)