smoothLasso {lessSEM} | R Documentation |
smoothLasso
Description
This function allows for regularization of models built in lavaan with the smoothed lasso penalty. The returned object is an S4 class; its elements can be accessed with the "@" operator (see examples). We don't recommend using this function. Use lasso() instead.
Usage
smoothLasso(
lavaanModel,
regularized,
lambdas,
epsilon,
tau,
modifyModel = lessSEM::modifyModel(),
control = lessSEM::controlBFGS()
)
Arguments
lavaanModel |
model of class lavaan |
regularized |
vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object |
lambdas |
numeric vector: values for the tuning parameter lambda |
epsilon |
epsilon > 0; controls the smoothness of the approximation. Larger values = smoother |
tau |
parameters below threshold tau will be seen as zeroed |
modifyModel |
used to modify the lavaanModel. See ?modifyModel. |
control |
used to control the optimizer. This element is generated with the controlBFGS function. See ?controlBFGS for more details. |
Details
For more details, see:
Lee, S.-I., Lee, H., Abbeel, P., & Ng, A. Y. (2006). Efficient L1 Regularized Logistic Regression. Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06), 401–408.
Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555–566. https://doi.org/10.1080/10705511.2016.1154793
Value
Model of class regularizedSEM
Examples
library(lessSEM)
# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.
dataset <- simulateExampleData()
lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"
lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)
# Regularization:
lsem <- smoothLasso(
# pass the fitted lavaan model
lavaanModel = lavaanModel,
# names of the regularized parameters:
regularized = paste0("l", 6:15),
epsilon = 1e-10,
tau = 1e-4,
lambdas = seq(0,1,length.out = 50))
# use the plot-function to plot the regularized parameters:
plot(lsem)
# the coefficients can be accessed with:
coef(lsem)
# elements of lsem can be accessed with the @ operator:
lsem@parameters[1,]
# AIC and BIC:
AIC(lsem)
BIC(lsem)
# The best parameters can also be extracted with:
coef(lsem, criterion = "AIC")
coef(lsem, criterion = "BIC")