gpLassoCpp {lessSEM}R Documentation

gpLassoCpp

Description

Implements lasso regularization for general purpose optimization problems with C++ functions. The penalty function is given by:

p( x_j) = \lambda |x_j|

Lasso regularization will set parameters to zero if \lambda is large enough

Usage

gpLassoCpp(
  par,
  regularized,
  fn,
  gr,
  lambdas = NULL,
  nLambdas = NULL,
  curve = 1,
  additionalArguments,
  method = "glmnet",
  control = lessSEM::controlGlmnet()
)

Arguments

par

labeled vector with starting values

regularized

vector with names of parameters which are to be regularized.

fn

pointer to Rcpp function which takes the parameters as input and returns the fit value (a single value)

gr

pointer to Rcpp function which takes the parameters as input and returns the gradients of the objective function.

lambdas

numeric vector: values for the tuning parameter lambda

nLambdas

alternative to lambda: If alpha = 1, lessSEM can automatically compute the first lambda value which sets all regularized parameters to zero. It will then generate nLambda values between 0 and the computed lambda.

curve

Allows for unequally spaced lambda steps (e.g., .01,.02,.05,1,5,20). If curve is close to 1 all lambda values will be equally spaced, if curve is large lambda values will be more concentrated close to 0. See ?lessSEM::curveLambda for more information.

additionalArguments

list with additional arguments passed to fn and gr

method

which optimizer should be used? Currently implemented are ista and glmnet.

control

used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

The interface is inspired by optim, but a bit more restrictive. Users have to supply a vector with starting values (important: This vector must have labels), a fitting function, and a gradient function. These fitting functions must take an const Rcpp::NumericVector& with parameter values as first argument and an Rcpp::List& as second argument

Lasso regularization:

For more details on GLMNET, see:

For more details on ISTA, see:

Value

Object of class gpRegularized

Examples


# This example shows how to use the optimizers
# for C++ objective functions. We will use
# a linear regression as an example. Note that
# this is not a useful application of the optimizers
# as there are specialized packages for linear regression
# (e.g., glmnet)

library(Rcpp)
library(lessSEM)

linreg <- '
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
double fitfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
  // extract all required elements:
  arma::colvec b = Rcpp::as<arma::colvec>(parameters);
  arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
  arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix
  
  // compute the sum of squared errors:
    arma::mat sse = arma::trans(y-X*b)*(y-X*b);
    
    // other packages, such as glmnet, scale the sse with 
    // 1/(2*N), where N is the sample size. We will do that here as well
    
    sse *= 1.0/(2.0 * y.n_elem);
    
    // note: We must return a double, but the sse is a matrix
    // To get a double, just return the single value that is in 
    // this matrix:
      return(sse(0,0));
}

// [[Rcpp::export]]
arma::rowvec gradientfunction(const Rcpp::NumericVector& parameters, Rcpp::List& data){
  // extract all required elements:
  arma::colvec b = Rcpp::as<arma::colvec>(parameters);
  arma::colvec y = Rcpp::as<arma::colvec>(data["y"]); // the dependent variable
  arma::mat X = Rcpp::as<arma::mat>(data["X"]); // the design matrix
  
  // note: we want to return our gradients as row-vector; therefore,
  // we have to transpose the resulting column-vector:
    arma::rowvec gradients = arma::trans(-2.0*X.t() * y + 2.0*X.t()*X*b);
    
    // other packages, such as glmnet, scale the sse with 
    // 1/(2*N), where N is the sample size. We will do that here as well
    
    gradients *= (.5/y.n_rows);
    
    return(gradients);
}

// Dirk Eddelbuettel at
// https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
typedef double (*fitFunPtr)(const Rcpp::NumericVector&, //parameters
                Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<fitFunPtr> fitFunPtr_t;

typedef arma::rowvec (*gradientFunPtr)(const Rcpp::NumericVector&, //parameters
                      Rcpp::List& //additional elements
);
typedef Rcpp::XPtr<gradientFunPtr> gradientFunPtr_t;

// [[Rcpp::export]]
fitFunPtr_t fitfunPtr() {
        return(fitFunPtr_t(new fitFunPtr(&fitfunction)));
}

// [[Rcpp::export]]
gradientFunPtr_t gradfunPtr() {
        return(gradientFunPtr_t(new gradientFunPtr(&gradientfunction)));
}
'

Rcpp::sourceCpp(code = linreg)

ffp <- fitfunPtr()
gfp <- gradfunPtr()

N <- 100 # number of persons
p <- 10 # number of predictors
X <- matrix(rnorm(N*p),	nrow = N, ncol = p) # design matrix
b <- c(rep(1,4), 
       rep(0,6)) # true regression weights
y <- X%*%matrix(b,ncol = 1) + rnorm(N,0,.2)

data <- list("y" = y,
             "X" = cbind(1,X))
parameters <- rep(0, ncol(data$X))
names(parameters) <- paste0("b", 0:(length(parameters)-1))

l1 <- gpLassoCpp(par = parameters, 
                 regularized = paste0("b", 1:(length(b)-1)),
                 fn = ffp, 
                 gr = gfp, 
                 lambdas = seq(0,1,.1), 
                 additionalArguments = data)

l1@parameters



[Package lessSEM version 1.5.5 Index]