cvLasso {lessSEM}R Documentation

cvLasso

Description

Implements cross-validated lasso regularization for structural equation models. The penalty function is given by:

p( x_j) = \lambda |x_j|

Lasso regularization will set parameters to zero if \lambda is large enough

Usage

cvLasso(
  lavaanModel,
  regularized,
  lambdas,
  k = 5,
  standardize = FALSE,
  returnSubsetParameters = FALSE,
  method = "glmnet",
  modifyModel = lessSEM::modifyModel(),
  control = lessSEM::controlGlmnet()
)

Arguments

lavaanModel

model of class lavaan

regularized

vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object

lambdas

numeric vector: values for the tuning parameter lambda

k

the number of cross-validation folds. Alternatively, you can pass a matrix with booleans (TRUE, FALSE) which indicates for each person which subset it belongs to. See ?lessSEM::createSubsets for an example of how this matrix should look like.

standardize

Standardizing your data prior to the analysis can undermine the cross- validation. Set standardize=TRUE to automatically standardize the data.

returnSubsetParameters

set to TRUE to return the parameters for each training set

method

which optimizer should be used? Currently implemented are ista and glmnet. With ista, the control argument can be used to switch to related procedures.

modifyModel

used to modify the lavaanModel. See ?modifyModel.

control

used to control the optimizer. This element is generated with the controlIsta and controlGlmnet functions. See ?controlIsta and ?controlGlmnet for more details.

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

Lasso regularization:

Regularized SEM

For more details on GLMNET, see:

For more details on ISTA, see:

Value

model of class cvRegularizedSEM

Examples

library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 + 
     l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 + 
     l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
                           data = dataset,
                           meanstructure = TRUE,
                           std.lv = TRUE)

# Regularization:

lsem <- cvLasso(
  # pass the fitted lavaan model
  lavaanModel = lavaanModel,
  # names of the regularized parameters:
  regularized = paste0("l", 6:15),
  lambdas = seq(0,1,.1),
  k = 5, # number of cross-validation folds
  standardize = TRUE) # automatic standardization

# use the plot-function to plot the cross-validation fit:
plot(lsem)

# the coefficients can be accessed with:
coef(lsem)
# if you are only interested in the estimates and not the tuning parameters, use
coef(lsem)@estimates
# or
estimates(lsem)

# elements of lsem can be accessed with the @ operator:
lsem@parameters

# The best parameters can also be extracted with:
estimates(lsem)

[Package lessSEM version 1.5.5 Index]