elasticity3.lefkoMat {lefko3} | R Documentation |
Estimate Elasticity of Population Growth Rate of a lefkoMat Object
Description
elasticity3.lefkoMat()
returns the elasticities of population growth
rate to elements of all $A
matrices in an object of class
lefkoMat
. If deterministic, then \lambda
is taken as the
population growth rate. If stochastic, then stochastic \lambda
, or
the stochastic growth rate, is taken as the population growth rate. This
function can handle large and sparse matrices, and so can be used with large
historical matrices, IPMs, age x stage matrices, as well as smaller
ahistorical matrices.
Usage
## S3 method for class 'lefkoMat'
elasticity3(
mats,
stochastic = FALSE,
times = 10000,
tweights = NA,
seed = NA,
sparse = "auto",
append_mats = FALSE,
...
)
Arguments
mats |
An object of class |
stochastic |
A logical value determining whether to conduct a deterministic (FALSE) or stochastic (TRUE) elasticity analysis. Defaults to FALSE. |
times |
The number of occasions to project forward in stochastic simulation. Defaults to 10,000. |
tweights |
An optional numeric vector or matrix denoting the probabilities of choosing each matrix in a stochastic projection. If a matrix is input, then a first-order Markovian environment is assumed, in which the probability of choosing a specific annual matrix depends on which annual matrix is currently chosen. If a vector is input, then the choice of annual matrix is assumed to be independent of the current matrix. Defaults to equal weighting among matrices. |
seed |
A number to use as a random number seed in stochastic projection. |
sparse |
A text string indicating whether to use sparse matrix encoding
( |
append_mats |
A logical value indicating whether to include the original
A, U, and F matrices in the output |
... |
Other parameters. |
Value
This function returns an object of class lefkoElas
, which is a
list with 8 elements. The first, h_elasmats
, is a list of historical
elasticity matrices (NULL
if an ahMPM is used as input). The second,
ah_elasmats
, is a list of either ahistorical elasticity matrices if an
ahMPM is used as input, or, if an hMPM is used as input, then the result is a
list of elasticity matrices in which historical elasticities have been summed
by the stage in occasions t and t+1 to produce
historically-corrected elasticity matrices, which are equivalent in dimension
to ahistorical elasticity matrices but reflect the effects of stage in
occasion t-1. The third element, hstages
, is a data frame
showing historical stage pairs (NULL if ahMPM used as input). The fourth
element, agestages
, shows age-stage combinations in the order used in
age-by-stage MPMs, if suppled. The fifth element, ahstages
, is a data
frame showing the order of ahistorical stages. The last 3 elements are the A,
U, and F portions of the input.
Notes
Deterministic elasticities are estimated as eqn. 9.72 in Caswell (2001,
Matrix Population Models). Stochastic elasticities are estimated as eqn.
14.99 in Caswell (2001). Note that stochastic elasticities are of the
stochastic \lambda
, while stochastic sensitivities are with regard to
the log of the stochastic \lambda
.
Speed can sometimes be increased by shifting from automatic sparse matrix determination to forced dense or sparse matrix projection. This will most likely occur when matrices have between 30 and 300 rows and columns. Defaults work best when matrices are very small and dense, or very large and sparse.
The time_weights
, steps
, and force_sparse
arguments are
now deprecated. Instead, please use the tweights
, times
, and
sparse
arguments.
See Also
Examples
# Lathyrus example
data(lathyrus)
sizevector <- c(0, 100, 13, 127, 3730, 3800, 0)
stagevector <- c("Sd", "Sdl", "VSm", "Sm", "VLa", "Flo", "Dorm")
repvector <- c(0, 0, 0, 0, 0, 1, 0)
obsvector <- c(0, 1, 1, 1, 1, 1, 0)
matvector <- c(0, 0, 1, 1, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0, 0, 0)
propvector <- c(1, 0, 0, 0, 0, 0, 0)
indataset <- c(0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 100, 11, 103, 3500, 3800, 0.5)
lathframe <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
immstatus = immvector, indataset = indataset, binhalfwidth = binvec,
propstatus = propvector)
lathvert <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
patchidcol = "SUBPLOT", individcol = "GENET", blocksize = 9,
juvcol = "Seedling1988", sizeacol = "Volume88", repstracol = "FCODE88",
fecacol = "Intactseed88", deadacol = "Dead1988",
nonobsacol = "Dormant1988", stageassign = lathframe, stagesize = "sizea",
censorcol = "Missing1988", censorkeep = NA, censor = TRUE)
lathsupp3 <- supplemental(stage3 = c("Sd", "Sd", "Sdl", "Sdl", "Sd", "Sdl", "mat"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "rep", "rep", "Sdl"),
stage1 = c("Sd", "rep", "Sd", "rep", "npr", "npr", "Sd"),
eststage3 = c(NA, NA, NA, NA, NA, NA, "mat"),
eststage2 = c(NA, NA, NA, NA, NA, NA, "Sdl"),
eststage1 = c(NA, NA, NA, NA, NA, NA, "NotAlive"),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, 0.345, 0.054, NA),
type = c(1, 1, 1, 1, 3, 3, 1), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframe, historical = TRUE)
ehrlen3 <- rlefko3(data = lathvert, stageframe = lathframe, year = "all",
stages = c("stage3", "stage2", "stage1"), supplement = lathsupp3,
yearcol = "year2", indivcol = "individ")
elasticity3(ehrlen3, stochastic = TRUE)
# Cypripedium example
data(cypdata)
sizevector <- c(0, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c("SD", "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")
repvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
propvector <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 0, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)
cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)
cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch", individcol = "plantid", blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded", NAas0 = TRUE,
NRasRep = TRUE)
cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("SD", "SD", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)
cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all", patch = "all", stages = c("stage3", "stage2", "stage1"),
size = c("size3added", "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid", indivcol = "individ")
elasticity3(cypmatrix2r)