| AIC.lcc {lcc} | R Documentation | 
Akaike and Bayesian Information Criteria for an lcc Object.
Description
Calculate the Akaike's 'An Information Criterion' or
the BIC or SBC (Schwarz's Bayesian criterion) for an object of
class lcc.
Usage
## S3 method for class 'lcc'
AIC(object, ..., k = 2)
## S3 method for class 'lcc'
BIC(object, ...)
Arguments
| object | an object inheriting from class  | 
| ... | optional arguments passed to the  | 
| k | numeric value, use as penalty coefficient for the number of
parameters in the fitted model; the default  | 
Value
A numeric value with the corresponding AIC or BIC
value. See methods for AIC objects to get more
details.
Author(s)
Thiago de Paula Oliveira, thiago.paula.oliveira@alumni.usp.br
See Also
lcc, summary.lcc,
coef.lcc, vcov.lcc
Examples
## Not run: 
attach(simulated_hue)
fm6 <- lcc(data = simulated_hue, subject = "Fruit",
           resp = "Hue", method = "Method", time = "Time",
           qf = 2, qr = 1, components = TRUE,
           time_lcc = list(n=50, from=min(Time), to=max(Time)))
AIC(fm6)
BIC(fm6)
## End(Not run)
[Package lcc version 1.1.4 Index]