konfound {konfound} | R Documentation |
Konfound Analysis for Various Model Types
Description
Performs sensitivity analysis on fitted models including linear models ('lm'), generalized linear models ('glm'), and linear mixed-effects models ('lmerMod'). It calculates the amount of bias required to invalidate or sustain an inference,and the impact of an omitted variable necessary to affect the inference.
Usage
konfound(
model_object,
tested_variable,
alpha = 0.05,
tails = 2,
index = "RIR",
to_return = "print",
two_by_two = FALSE,
n_treat = NULL,
switch_trm = TRUE,
replace = "control"
)
Arguments
model_object |
A model object produced by 'lm', 'glm', or 'lme4::lmer'. |
tested_variable |
Variable associated with the coefficient to be tested. |
alpha |
Significance level for hypothesis testing. |
tails |
Number of tails for the test (1 or 2). |
index |
Type of sensitivity analysis ('RIR' by default). |
to_return |
Type of output to return ('print', 'raw_output', 'table'). |
two_by_two |
Boolean; if 'TRUE', uses a 2x2 table approach for 'glm' dichotomous variables. |
n_treat |
Number of treatment cases (used only if 'two_by_two' is 'TRUE'). |
switch_trm |
Boolean; switch treatment and control in the analysis. |
replace |
Replacement method for treatment cases ('control' by default). |
Value
Depending on 'to_return', prints the result, returns a raw output, or a summary table.
Examples
# using lm() for linear models
m1 <- lm(mpg ~ wt + hp, data = mtcars)
konfound(m1, wt)
konfound(m1, wt, to_return = "table")
# using glm() for non-linear models
if (requireNamespace("forcats")) {
d <- forcats::gss_cat
d$married <- ifelse(d$marital == "Married", 1, 0)
m2 <- glm(married ~ age, data = d, family = binomial(link = "logit"))
konfound(m2, age)
}
# using lme4 for mixed effects (or multi-level) models
if (requireNamespace("lme4")) {
library(lme4)
m3 <- fm1 <- lme4::lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
konfound(m3, Days)
}
m4 <- glm(outcome ~ condition, data = binary_dummy_data, family = binomial(link = "logit"))
konfound(m4, condition, two_by_two = TRUE, n_treat = 55)