nm {klaR} | R Documentation |
Nearest Mean Classification
Description
Function for nearest mean classification.
Usage
nm(x, ...)
## Default S3 method:
nm(x, grouping, gamma = 0, ...)
## S3 method for class 'data.frame'
nm(x, ...)
## S3 method for class 'matrix'
nm(x, grouping, ..., subset, na.action = na.fail)
## S3 method for class 'formula'
nm(formula, data = NULL, ..., subset, na.action = na.fail)
Arguments
x |
matrix or data frame containing the explanatory variables
(required, if |
grouping |
factor specifying the class for each observation
(required, if |
formula |
formula of the form |
data |
Data frame from which variables specified in |
gamma |
gamma parameter for rbf weight of the distance to mean. If |
subset |
An index vector specifying the cases to be used in the training sample. (Note: If given, this argument must be named!) |
na.action |
specify the action to be taken if |
... |
further arguments passed to the underlying |
Details
nm
is calling sknn
with the class means as observations.
If gamma>0
a gaussian like density is used to weight the distance to the class means
weight=exp(-gamma*distance)
. This is similar to an rbf kernel.
If the distances are large it may be useful to scale
the data first.
Value
A list containing the function call and the class means (learn
)).
Author(s)
Karsten Luebke, karsten.luebke@fom.de
See Also
Examples
data(B3)
x <- nm(PHASEN ~ ., data = B3)
x$learn
x <- nm(PHASEN ~ ., data = B3, gamma = 0.1)
predict(x)$post