B C D E F G H K L M N P Q R S T U W X
b.scal | Calculation of beta scaling parameters |
B3 | West German Business Cycles 1955-1994 |
benchB3 | Benchmarking on B3 data |
betascale | Scale membership values according to a beta scaling |
calc.trans | Calculation of transition probabilities |
centerlines | Lines from classborders to the center |
classscatter | Classification scatterplot matrix |
cond.index | Calculation of Condition Indices for Linear Regression |
corclust | Function to identify groups of highly correlated variables for removing correlated features from the data for further analysis. |
countries | Socioeconomic data for the most populous countries. |
cvtree | Extracts variable cluster IDs |
dkernel | Estimate density of a given kernel |
drawparti | Plotting the 2-d partitions of classification methods |
e.scal | Function to calculate e- or softmax scaled membership values |
EDAM | Computation of an Eight Direction Arranged Map |
errormatrix | Tabulation of prediction errors by classes |
friedman.data | Friedman's classification benchmark data |
GermanCredit | Statlog German Credit |
greedy.wilks | Stepwise forward variable selection for classification |
greedy.wilks.default | Stepwise forward variable selection for classification |
greedy.wilks.formula | Stepwise forward variable selection for classification |
hmm.sop | Calculation of HMM Sum of Path |
kmodes | K-Modes Clustering |
level_shardsplot | Plotting Eight Direction Arranged Maps or Self-Organizing Maps |
loclda | Localized Linear Discriminant Analysis (LocLDA) |
loclda.data.frame | Localized Linear Discriminant Analysis (LocLDA) |
loclda.default | Localized Linear Discriminant Analysis (LocLDA) |
loclda.formula | Localized Linear Discriminant Analysis (LocLDA) |
loclda.matrix | Localized Linear Discriminant Analysis (LocLDA) |
locpvs | Pairwise variable selection for classification in local models |
meclight | Minimal Error Classification |
meclight.data.frame | Minimal Error Classification |
meclight.default | Minimal Error Classification |
meclight.formula | Minimal Error Classification |
meclight.matrix | Minimal Error Classification |
NaiveBayes | Naive Bayes Classifier |
NaiveBayes.default | Naive Bayes Classifier |
NaiveBayes.formula | Naive Bayes Classifier |
nm | Nearest Mean Classification |
nm.data.frame | Nearest Mean Classification |
nm.default | Nearest Mean Classification |
nm.formula | Nearest Mean Classification |
nm.matrix | Nearest Mean Classification |
partimat | Plotting the 2-d partitions of classification methods |
partimat.data.frame | Plotting the 2-d partitions of classification methods |
partimat.default | Plotting the 2-d partitions of classification methods |
partimat.formula | Plotting the 2-d partitions of classification methods |
partimat.matrix | Plotting the 2-d partitions of classification methods |
plineplot | Plotting marginal posterior class probabilities |
plot.corclust | Function to identify groups of highly correlated variables for removing correlated features from the data for further analysis. |
plot.EDAM | Plotting Eight Direction Arranged Maps or Self-Organizing Maps |
plot.NaiveBayes | Naive Bayes Plot |
plot.rda | Regularized Discriminant Analysis (RDA) |
plot.stepclass | Stepwise variable selection for classification |
plot.woe | Plot information values |
predict.loclda | Localized Linear Discriminant Analysis (LocLDA) |
predict.locpvs | predict method for locpvs objects |
predict.meclight | Prediction of Minimal Error Classification |
predict.NaiveBayes | Naive Bayes Classifier |
predict.pvs | predict method for pvs objects |
predict.rda | Regularized Discriminant Analysis (RDA) |
predict.sknn | Simple k Nearest Neighbours Classification |
predict.svmlight | Interface to SVMlight |
predict.woe | Weights of evidence |
print.greedy.wilks | Stepwise forward variable selection for classification |
print.kmodes | K-Modes Clustering |
print.loclda | Localized Linear Discriminant Analysis (LocLDA) |
print.meclight | Minimal Error Classification |
print.pvs | Pairwise variable selection for classification |
print.rda | Regularized Discriminant Analysis (RDA) |
print.stepclass | Stepwise variable selection for classification |
print.woe | Weights of evidence |
pvs | Pairwise variable selection for classification |
pvs.default | Pairwise variable selection for classification |
pvs.formula | Pairwise variable selection for classification |
quadplot | Plotting of 4 dimensional membership representation simplex |
rda | Regularized Discriminant Analysis (RDA) |
rda.default | Regularized Discriminant Analysis (RDA) |
rda.formula | Regularized Discriminant Analysis (RDA) |
shardsplot | Plotting Eight Direction Arranged Maps or Self-Organizing Maps |
sknn | Simple k nearest Neighbours |
sknn.data.frame | Simple k nearest Neighbours |
sknn.default | Simple k nearest Neighbours |
sknn.formula | Simple k nearest Neighbours |
sknn.matrix | Simple k nearest Neighbours |
stepclass | Stepwise variable selection for classification |
stepclass.default | Stepwise variable selection for classification |
stepclass.formula | Stepwise variable selection for classification |
svmlight | Interface to SVMlight |
svmlight.data.frame | Interface to SVMlight |
svmlight.default | Interface to SVMlight |
svmlight.formula | Interface to SVMlight |
svmlight.matrix | Interface to SVMlight |
triframe | Barycentric plots |
trigrid | Barycentric plots |
trilines | Barycentric plots |
triperplines | Barycentric plots |
triplot | Barycentric plots |
tripoints | Barycentric plots |
tritrafo | Barycentric plots |
ucpm | Uschi's classification performance measures |
woe | Weights of evidence |
woe.default | Weights of evidence |
woe.formula | Weights of evidence |
xtractvars | Variable clustering based variable selection |