covTS {kergp}R Documentation

Creator Function for covTS Objects

Description

Creator function for covTS objects representing a Tensor Sum covariance kernel.

Usage

covTS(inputs = paste("x", 1:d, sep = ""),
      d = length(inputs), kernel = "k1Matern5_2",
      dep = NULL, value = NULL, var = 1, ...)

Arguments

inputs

Character vector giving the names of the inputs used as arguments of kernel. Optional if d is given.

d

Integer specifying the spatial dimension (equal to the number of inputs). Optional if inputs is given.

kernel

Character, name of the one-dimensional kernel.

dep

Character vector with elements "cst" or "input" usually built using the concatenation c. The names must correspond to parameters of the kernel specified with kernel. When an element is "cst", the corresponding parameter of the 1d kernel will be the same for all inputs. When the element is "input", the corresponding parameter of the 1d kernel gives birth to d parameters in the covTS object, one by input.

value

Named numeric vector. The names must correspond to the 1d kernel parameters.

var

Numeric vector giving the variances σi2\sigma^2_i that weight the dd components.

...

Not used at this stage.

Details

A covTS object represents a dd-dimensional kernel object KK of the form

K(x,x;θ)=i=1dk(xi,xi;θsi)K(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \sum_{i=1}^d k(x_i, x_i';\boldsymbol{\theta}_{\mathbf{s}_i})

where kk is the covariance kernel for a Gaussian Process YxY_x indexed by a scalar xx. The dd numbers xix_i stand for the components of the dd-dimensional location vector x\mathbf{x}. The length pp of all the vectors si\mathbf{s}_i is the number of parameters of the one-dimensional kernel kk, i.e. 2 or 3 for classical covariance kernels.

The package comes with the following covariance kernels which can be given as kernel argument.

name description pp par. names
k1Exp exponential 22 range, var
k1Matern3_2 Matérn ν=3/2\nu = 3/2 22 range, var
k1Matern5_2 Matérn ν=5/2\nu = 5/2 22 range, var
k1PowExp power exponential 33 range, shape, var
k1Gauss gaussian or "square exponential" 22 range, var

Note that the exponential kernel of k1Exp is identical to the Matérn kernel for ν=1/2\nu = 1/2, and that the three Matérns kernels provided here for ν=1/2\nu = 1/2, ν=3/2\nu = 3/2 and ν=5/2\nu = 5/2 are special cases of Continuous AutoRegressive (CAR) process covariances, with respective order 11, 22 and 33.

Value

An object with S4 class "covTS".

Caution

The 1d1d kernel kk as given in kernel is always assumed to have a variance parameter with name var. This assumption may be relaxed in future versions.

Note

Most arguments receive default values or are recycled if necessary.

Author(s)

Y. Deville, O. Roustant D. Ginsbourger

References

N. Durrande, D. Ginsbourger, and O. Roustant (2012) Additive "Covariance kernels for high-dimensional Gaussian Process modeling", Annales de la Faculté des Sciences de Toulouse 21(3), pp. 481–499.

Examples

myCov1 <- covTS(kernel = "k1Exp", inputs = c("v1", "v2", "v3"),
                dep = c(range = "input"))
coef(myCov1) <- c(range = c(0.3, 0.7, 0.9), sigma2 = c(2, 2, 8))

myCov1
coef(myCov1)
coef(myCov1, as = "matrix")
coef(myCov1, as = "list")
coef(myCov1, as = "matrix", type = "range")

# with a common range parameter
myCov2 <- covTS(kernel = "k1Exp", inputs = c("v1", "v2", "v3"), 
                dep = c(range = "cst"), value = c(range = 0.7),
                var = c(2, 2, 8))
myCov2

myCov3 <- covTS(d = 3, kernel = "k1PowExp",
                dep = c(range = "cst", shape = "cst"),
                value = c(shape = 1.8, range = 1.1),
                var = c(2, 2, 8))
myCov3

[Package kergp version 0.5.7 Index]