as.list, covTP-method {kergp} | R Documentation |
Coerce a covTP
Object into a List
Description
Coerce a covTP
object representing a Tensor-Product
covariance kernel on the d
-dimensional Euclidean space
into a list containing d
one-dimensional kernels.
Usage
## S4 method for signature 'covTP'
as.list(x)
Arguments
x |
A |
Value
A list with length d
or d + 1
where d
is the
"dimension" slot x@d
of the object x
. The first d
elements of the list are one-dimensional correlation kernel
objects with class "covTP"
. When x
is a
covariance kernel (as opposed to a correlation kernel),
the list contains one more element which gives the variance.
Caution
When x
is not a correlation kernel the
(d + 1)
-th element of the returned list may be different in
future versions: it may be a constant covariance kernel.
See Also
covTP
and covTP-class
.
Examples
set.seed(123)
d <- 6
myCov1 <- covTP(d = d, cov = "corr")
coef(myCov1) <- as.vector(simulPar(myCov1, nsim = 1))
as.list(myCov1)
## more examples and check the value of a 'covMat'
L <- list()
myCov <- list()
myCov[[1]] <- covTP(d = d, cov = "corr")
coef(myCov[[1]]) <- as.vector(simulPar(myCov[[1]], nsim = 1))
L[[1]] <- as.list(myCov[[1]])
myCov[[2]] <- covTP(k1Fun1 = k1Fun1PowExp, d = d, cov = "corr")
coef(myCov[[2]]) <- as.vector(simulPar(myCov[[2]], nsim = 1))
L[[2]] <- as.list(myCov[[2]])
myCov[[3]] <- covTP(k1Fun1 = k1Fun1PowExp, d = d, iso1 = 0L, cov = "corr")
coef(myCov[[3]]) <- as.vector(simulPar(myCov[[3]], nsim = 1))
L[[3]] <- as.list(myCov[[3]])
n <- 10
X <- matrix(runif(n * d), nrow = n,
dimnames = list(NULL, paste("x", 1:d, sep = "")))
for (iTest in 1:3) {
C <- covMat(L[[iTest]][[1]], X[ , 1, drop = FALSE])
for (j in 2:d) {
C <- C * covMat(L[[iTest]][[j]], X[ , j, drop = FALSE])
}
CTest <- covMat(myCov[[iTest]], X)
print(max(abs(abs(C - CTest))))
}
[Package kergp version 0.5.7 Index]