runClustering {karyotapR} | R Documentation |
Cluster 2D data
Description
Clusters data using dbscan method and saves cluster assignments for each cell barcode to colData
.
Generally used to assign clusters to UMAP projection after PCA and UMAP dimensional reduction.
Usage
runClustering(
TapestriExperiment,
alt.exp = "alleleFrequency",
dim.reduction = "UMAP",
eps = 0.8,
dim.1 = 1,
dim.2 = 2,
...
)
Arguments
TapestriExperiment |
|
alt.exp |
Character, |
dim.reduction |
Character, reduced dimension data to use. Default "UMAP". |
eps |
Numeric, |
dim.1 |
Numeric, index of data dimension to use. Default 1. |
dim.2 |
Numeric, index of data dimension to use. Default 2. |
... |
Additional parameters to pass to |
Value
TapestriExperiment
object with updated colData
containing cluster assignments.
See Also
Examples
tap.object <- newTapestriExperimentExample() # example TapestriExperiment object
tap.object <- runPCA(tap.object, alt.exp = "alleleFrequency")
tap.object <- runUMAP(tap.object, pca.dims = 1:3)
tap.object <- runClustering(tap.object, dim.reduction = "UMAP", eps = 0.8)
[Package karyotapR version 1.0.1 Index]