| runClustering {karyotapR} | R Documentation |
Cluster 2D data
Description
Clusters data using dbscan method and saves cluster assignments for each cell barcode to colData.
Generally used to assign clusters to UMAP projection after PCA and UMAP dimensional reduction.
Usage
runClustering(
TapestriExperiment,
alt.exp = "alleleFrequency",
dim.reduction = "UMAP",
eps = 0.8,
dim.1 = 1,
dim.2 = 2,
...
)
Arguments
TapestriExperiment |
|
alt.exp |
Character, |
dim.reduction |
Character, reduced dimension data to use. Default "UMAP". |
eps |
Numeric, |
dim.1 |
Numeric, index of data dimension to use. Default 1. |
dim.2 |
Numeric, index of data dimension to use. Default 2. |
... |
Additional parameters to pass to |
Value
TapestriExperiment object with updated colData containing cluster assignments.
See Also
Examples
tap.object <- newTapestriExperimentExample() # example TapestriExperiment object
tap.object <- runPCA(tap.object, alt.exp = "alleleFrequency")
tap.object <- runUMAP(tap.object, pca.dims = 1:3)
tap.object <- runClustering(tap.object, dim.reduction = "UMAP", eps = 0.8)
[Package karyotapR version 1.0.1 Index]