| mse_hat {kader} | R Documentation | 
MSE Estimator
Description
Vectorized (in \sigma) function of the MSE estimator in eq. (2.3) of
Srihera & Stute (2011), and of the analogous estimator in the paragraph after
eq. (6) in Eichner & Stute (2013).
Usage
mse_hat(sigma, Ai, Bj, h, K, fnx, ticker = FALSE)
Arguments
| sigma | Numeric vector  | 
| Ai | Numeric vector expecting  | 
| Bj | Numeric vector expecting  | 
| h | Numeric scalar, where (usually)  | 
| K | Kernel function with vectorized in- & output. | 
| fnx | 
 | 
| ticker | Logical; determines if a 'ticker' documents the iteration
progress through  | 
Value
A vector with corresponding MSE values for the values in
sigma.
See Also
For details see bias_AND_scaledvar.
Examples
require(stats)
set.seed(2017);     n <- 100;     Xdata <- sort(rnorm(n))
x0 <- 1;      Sigma <- seq(0.01, 10, length = 11)
h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
fnx0 <- mean(dnorm(Ai)) / h   # Parzen-Rosenblatt estimator at x0.
 # non-robust method:
theta.X <- mean(Xdata) - Xdata
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = theta.X,
  h = h, K = dnorm, fnx = fnx0, ticker = TRUE)
 # rank transformation-based method (requires sorted data):
negJ <- -J_admissible(1:n / n)   # rank trafo
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = negJ,
  h = h, K = dnorm, fnx = fnx0, ticker = TRUE)