kfn_vectorized {kader} | R Documentation |
Convolution of Kernel Function K with fn
Description
Vectorized evaluation of the convolution of the kernel function K with fn.
Usage
kfn_vectorized(u, K, xixj, h, sig)
Arguments
u |
Numeric vector. |
K |
Kernel function with vectorized in- & output. |
xixj |
Numeric matrix. |
h |
Numeric scalar. |
sig |
Numeric scalar. |
Details
Vectorized (in u) evaluation of - a more explicit representation of - the
integrand K(u) * f_n(\ldots - h^2/\sigma * u)
which is used in the
computation of the bias estimator before eq. (2.3) in Srihera & Stute (2011).
Also used for the analogous computation of the respective bias estimator
in the paragraph after eq. (6) in Eichner & Stute (2013).
Value
A vector of (K * f_n)(u)
evaluated at the values in
u
.
Note
An alternative implementation could be
K(u) * sapply(h/sig * u, function(v) mean(K(xixj - v))) / h
Examples
require(stats)
set.seed(2017); n <- 100; Xdata <- rnorm(n)
x0 <- 1; sig <- 1; h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
Bj <- mean(Xdata) - Xdata # in case of non-robust method
AiBj <- outer(Ai, Bj/sig, "+")
ugrid <- seq(-10, 10, by = 1)
kader:::kfn_vectorized(u = ugrid, K = dnorm, xixj = AiBj, h = h, sig = sig)
[Package kader version 0.0.8 Index]