jrSiCKLSNMF {jrSiCKLSNMF} | R Documentation |
Run jrSiCKLSNMF outside of a SickleJr object
Description
Perform joint non-negative matrix factorization (NMF) across multiple modalities of single-cell data.
To measure the discrepancy between two distributions, one can use the Poisson Kullback-Leibler divergence (\mathtt{diffFunc}=
\mathtt{"klp"}
) or the Frobenius norm (\mathtt{diffFunc}=
\mathtt{"fr"}
).
It is also possible to set graph regularization constraints on \mathbf{W}^v
and either a sparsity constraint on \mathbf{H}
or an
L2 norm constraint on the rows of \mathbf{H}
.
This function passes by reference and updates the variables \mathtt{WL}
and \mathtt{H}
and does not require data to be in an
object of type SickleJr. \mathtt{RunjrSiCKLSNMF}
calls this function. If your data are in an object of class SickleJr,
please use the \mathtt{RunjrSiCKLSNMF}
function instead.
Usage
jrSiCKLSNMF(
datamatL,
WL,
H,
AdjL,
DL,
lambdaWL,
lambdaH,
initsamp,
suppress_warnings,
diffFunc = "klp",
Hconstraint = "None",
differr = 1e-06,
rounds = 1000L,
display_progress = TRUE,
minibatch = TRUE,
batchsize = 100L,
random_W_updates = TRUE,
minrounds = 100L
)
Arguments
datamatL |
An R list where each entry contains a normalized, sparse |
WL |
An R list containing initialized values of the |
H |
A matrix containing initialized values for the shared |
AdjL |
An R list containing all of the adjacency matrices for the
feature-feature similarity graphs in sparse format; note that |
DL |
An R list containing all of the degree matrices of the
feature-feature similarity graphs; note that |
lambdaWL |
A list of the |
lambdaH |
A double containing the desired value for |
initsamp |
A vector of randomly selected rows of |
suppress_warnings |
A Boolean that indicates whether warnings should be suppressed |
diffFunc |
A string indicating what type of divergence to use; set to the Poisson Kullback-Leibler divergence
( |
Hconstraint |
A string that indicates whether you want to set an L2 norm constraint on the rows of |
differr |
A double containing the tolerance |
rounds |
A double containing the number of rounds |
display_progress |
A Boolean indicating whether to display the progress bar |
minibatch |
A Boolean indicating whether to use the mini-batch version of the algorithm |
batchsize |
Number of batches for mini-batch updates |
random_W_updates |
A Boolean indicating whether to update |
minrounds |
A minimum number of rounds for the algorithm to run: most useful for the mini-batch algorithm |
Value
An R list containing values for the objective function.
References
Cai D, He X, Wu X, Han J (2008). “Non-negative matrix factorization on manifold.” Proceedings - IEEE International Conference on Data Mining, ICDM, 63–72. ISSN 15504786, doi:10.1109/ICDM.2008.57.
Greene D, Cunningham P (2009). “A matrix factorization approach for integrating multiple data views.” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5781 LNAI(PART 1), 423–438. ISSN 03029743, doi:10.1007/978-3-642-04180-8_45/COVER, https://link.springer.com/chapter/10.1007/978-3-642-04180-8_45.
Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.
Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with high-performance C++ linear algebra.” Computational Statistics and Data Analysis, 71, 1054–1063. http://dx.doi.org/10.1016/j.csda.2013.02.005.
Elyanow R, Dumitrascu B, Engelhardt BE, Raphael BJ (2020). “NetNMF-SC: Leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.” Genome Research, 30(2), 195–204. ISSN 15495469, doi:10.1101/gr.251603.119, https://pubmed.ncbi.nlm.nih.gov/31992614/.
Le Roux J, Weniger F, Hershey JR (2015). “Sparse NMF: half-baked or well done?” Mitsubishi Electric Research Laboratories (MERL), Cambridge.
Lee DD, Seung HS (2000). “Algorithms for Non-negative Matrix Factorization.” In Leen T, Dietterich T, Tresp V (eds.), Advances in Neural Information Processing Systems, volume 13. https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf.
Liu J, Wang C, Gao J, Han J (2013). “Multi-view clustering via joint nonnegative matrix factorization.” Proceedings of the 2013 SIAM International Conference on Data Mining, 252–260. doi:10.1137/1.9781611972832.28.